This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for odd2np1 . (Contributed by Scott Fenton, 3-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odd2np1lem | |- ( N e. NN0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( j = 0 -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = 0 ) ) |
|
| 2 | 1 | rexbidv | |- ( j = 0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 ) ) |
| 3 | eqeq2 | |- ( j = 0 -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = 0 ) ) |
|
| 4 | 3 | rexbidv | |- ( j = 0 -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = 0 ) ) |
| 5 | 2 4 | orbi12d | |- ( j = 0 -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 \/ E. k e. ZZ ( k x. 2 ) = 0 ) ) ) |
| 6 | eqeq2 | |- ( j = m -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = m ) ) |
|
| 7 | 6 | rexbidv | |- ( j = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = m ) ) |
| 8 | oveq2 | |- ( n = x -> ( 2 x. n ) = ( 2 x. x ) ) |
|
| 9 | 8 | oveq1d | |- ( n = x -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. x ) + 1 ) ) |
| 10 | 9 | eqeq1d | |- ( n = x -> ( ( ( 2 x. n ) + 1 ) = m <-> ( ( 2 x. x ) + 1 ) = m ) ) |
| 11 | 10 | cbvrexvw | |- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = m <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) |
| 12 | 7 11 | bitrdi | |- ( j = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) ) |
| 13 | eqeq2 | |- ( j = m -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = m ) ) |
|
| 14 | 13 | rexbidv | |- ( j = m -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = m ) ) |
| 15 | oveq1 | |- ( k = y -> ( k x. 2 ) = ( y x. 2 ) ) |
|
| 16 | 15 | eqeq1d | |- ( k = y -> ( ( k x. 2 ) = m <-> ( y x. 2 ) = m ) ) |
| 17 | 16 | cbvrexvw | |- ( E. k e. ZZ ( k x. 2 ) = m <-> E. y e. ZZ ( y x. 2 ) = m ) |
| 18 | 14 17 | bitrdi | |- ( j = m -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. y e. ZZ ( y x. 2 ) = m ) ) |
| 19 | 12 18 | orbi12d | |- ( j = m -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) ) ) |
| 20 | eqeq2 | |- ( j = ( m + 1 ) -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
|
| 21 | 20 | rexbidv | |- ( j = ( m + 1 ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 22 | eqeq2 | |- ( j = ( m + 1 ) -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = ( m + 1 ) ) ) |
|
| 23 | 22 | rexbidv | |- ( j = ( m + 1 ) -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 24 | 21 23 | orbi12d | |- ( j = ( m + 1 ) -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 25 | eqeq2 | |- ( j = N -> ( ( ( 2 x. n ) + 1 ) = j <-> ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 26 | 25 | rexbidv | |- ( j = N -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 27 | eqeq2 | |- ( j = N -> ( ( k x. 2 ) = j <-> ( k x. 2 ) = N ) ) |
|
| 28 | 27 | rexbidv | |- ( j = N -> ( E. k e. ZZ ( k x. 2 ) = j <-> E. k e. ZZ ( k x. 2 ) = N ) ) |
| 29 | 26 28 | orbi12d | |- ( j = N -> ( ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = j \/ E. k e. ZZ ( k x. 2 ) = j ) <-> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) ) |
| 30 | 0z | |- 0 e. ZZ |
|
| 31 | 2cn | |- 2 e. CC |
|
| 32 | 31 | mul02i | |- ( 0 x. 2 ) = 0 |
| 33 | oveq1 | |- ( k = 0 -> ( k x. 2 ) = ( 0 x. 2 ) ) |
|
| 34 | 33 | eqeq1d | |- ( k = 0 -> ( ( k x. 2 ) = 0 <-> ( 0 x. 2 ) = 0 ) ) |
| 35 | 34 | rspcev | |- ( ( 0 e. ZZ /\ ( 0 x. 2 ) = 0 ) -> E. k e. ZZ ( k x. 2 ) = 0 ) |
| 36 | 30 32 35 | mp2an | |- E. k e. ZZ ( k x. 2 ) = 0 |
| 37 | 36 | olci | |- ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = 0 \/ E. k e. ZZ ( k x. 2 ) = 0 ) |
| 38 | orcom | |- ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) <-> ( E. y e. ZZ ( y x. 2 ) = m \/ E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) ) |
|
| 39 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 40 | mulcom | |- ( ( y e. CC /\ 2 e. CC ) -> ( y x. 2 ) = ( 2 x. y ) ) |
|
| 41 | 39 31 40 | sylancl | |- ( y e. ZZ -> ( y x. 2 ) = ( 2 x. y ) ) |
| 42 | 41 | adantl | |- ( ( m e. NN0 /\ y e. ZZ ) -> ( y x. 2 ) = ( 2 x. y ) ) |
| 43 | 42 | eqeq1d | |- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( y x. 2 ) = m <-> ( 2 x. y ) = m ) ) |
| 44 | eqid | |- ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) |
|
| 45 | oveq2 | |- ( n = y -> ( 2 x. n ) = ( 2 x. y ) ) |
|
| 46 | 45 | oveq1d | |- ( n = y -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 47 | 46 | eqeq1d | |- ( n = y -> ( ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) ) ) |
| 48 | 47 | rspcev | |- ( ( y e. ZZ /\ ( ( 2 x. y ) + 1 ) = ( ( 2 x. y ) + 1 ) ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 49 | 44 48 | mpan2 | |- ( y e. ZZ -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) ) |
| 50 | oveq1 | |- ( ( 2 x. y ) = m -> ( ( 2 x. y ) + 1 ) = ( m + 1 ) ) |
|
| 51 | 50 | eqeq2d | |- ( ( 2 x. y ) = m -> ( ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 52 | 51 | rexbidv | |- ( ( 2 x. y ) = m -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( ( 2 x. y ) + 1 ) <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 53 | 49 52 | syl5ibcom | |- ( y e. ZZ -> ( ( 2 x. y ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 54 | 53 | adantl | |- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( 2 x. y ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 55 | 43 54 | sylbid | |- ( ( m e. NN0 /\ y e. ZZ ) -> ( ( y x. 2 ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 56 | 55 | rexlimdva | |- ( m e. NN0 -> ( E. y e. ZZ ( y x. 2 ) = m -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) ) ) |
| 57 | peano2z | |- ( x e. ZZ -> ( x + 1 ) e. ZZ ) |
|
| 58 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 59 | mulcom | |- ( ( x e. CC /\ 2 e. CC ) -> ( x x. 2 ) = ( 2 x. x ) ) |
|
| 60 | 31 59 | mpan2 | |- ( x e. CC -> ( x x. 2 ) = ( 2 x. x ) ) |
| 61 | 31 | mullidi | |- ( 1 x. 2 ) = 2 |
| 62 | 61 | a1i | |- ( x e. CC -> ( 1 x. 2 ) = 2 ) |
| 63 | 60 62 | oveq12d | |- ( x e. CC -> ( ( x x. 2 ) + ( 1 x. 2 ) ) = ( ( 2 x. x ) + 2 ) ) |
| 64 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 65 | 64 | oveq2i | |- ( ( 2 x. x ) + 2 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) |
| 66 | 63 65 | eqtrdi | |- ( x e. CC -> ( ( x x. 2 ) + ( 1 x. 2 ) ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 67 | ax-1cn | |- 1 e. CC |
|
| 68 | adddir | |- ( ( x e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( x + 1 ) x. 2 ) = ( ( x x. 2 ) + ( 1 x. 2 ) ) ) |
|
| 69 | 67 31 68 | mp3an23 | |- ( x e. CC -> ( ( x + 1 ) x. 2 ) = ( ( x x. 2 ) + ( 1 x. 2 ) ) ) |
| 70 | mulcl | |- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
|
| 71 | 31 70 | mpan | |- ( x e. CC -> ( 2 x. x ) e. CC ) |
| 72 | addass | |- ( ( ( 2 x. x ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
|
| 73 | 67 67 72 | mp3an23 | |- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 74 | 71 73 | syl | |- ( x e. CC -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 75 | 66 69 74 | 3eqtr4d | |- ( x e. CC -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 76 | 58 75 | syl | |- ( x e. ZZ -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 77 | 76 | adantl | |- ( ( m e. NN0 /\ x e. ZZ ) -> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 78 | oveq1 | |- ( k = ( x + 1 ) -> ( k x. 2 ) = ( ( x + 1 ) x. 2 ) ) |
|
| 79 | 78 | eqeq1d | |- ( k = ( x + 1 ) -> ( ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) ) |
| 80 | 79 | rspcev | |- ( ( ( x + 1 ) e. ZZ /\ ( ( x + 1 ) x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) -> E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 81 | 57 77 80 | syl2an2 | |- ( ( m e. NN0 /\ x e. ZZ ) -> E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) ) |
| 82 | oveq1 | |- ( ( ( 2 x. x ) + 1 ) = m -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( m + 1 ) ) |
|
| 83 | 82 | eqeq2d | |- ( ( ( 2 x. x ) + 1 ) = m -> ( ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> ( k x. 2 ) = ( m + 1 ) ) ) |
| 84 | 83 | rexbidv | |- ( ( ( 2 x. x ) + 1 ) = m -> ( E. k e. ZZ ( k x. 2 ) = ( ( ( 2 x. x ) + 1 ) + 1 ) <-> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 85 | 81 84 | syl5ibcom | |- ( ( m e. NN0 /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = m -> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 86 | 85 | rexlimdva | |- ( m e. NN0 -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m -> E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) |
| 87 | 56 86 | orim12d | |- ( m e. NN0 -> ( ( E. y e. ZZ ( y x. 2 ) = m \/ E. x e. ZZ ( ( 2 x. x ) + 1 ) = m ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 88 | 38 87 | biimtrid | |- ( m e. NN0 -> ( ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = m \/ E. y e. ZZ ( y x. 2 ) = m ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( m + 1 ) \/ E. k e. ZZ ( k x. 2 ) = ( m + 1 ) ) ) ) |
| 89 | 5 19 24 29 37 88 | nn0ind | |- ( N e. NN0 -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N \/ E. k e. ZZ ( k x. 2 ) = N ) ) |