This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 2 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 3 | 2 | a1i | |- ( N e. RR -> ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) ) |
| 4 | elnn0 | |- ( -u N e. NN0 <-> ( -u N e. NN \/ -u N = 0 ) ) |
|
| 5 | recn | |- ( N e. RR -> N e. CC ) |
|
| 6 | 0cn | |- 0 e. CC |
|
| 7 | negcon1 | |- ( ( N e. CC /\ 0 e. CC ) -> ( -u N = 0 <-> -u 0 = N ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( N e. RR -> ( -u N = 0 <-> -u 0 = N ) ) |
| 9 | neg0 | |- -u 0 = 0 |
|
| 10 | 9 | eqeq1i | |- ( -u 0 = N <-> 0 = N ) |
| 11 | eqcom | |- ( 0 = N <-> N = 0 ) |
|
| 12 | 10 11 | bitri | |- ( -u 0 = N <-> N = 0 ) |
| 13 | 8 12 | bitrdi | |- ( N e. RR -> ( -u N = 0 <-> N = 0 ) ) |
| 14 | 13 | orbi2d | |- ( N e. RR -> ( ( -u N e. NN \/ -u N = 0 ) <-> ( -u N e. NN \/ N = 0 ) ) ) |
| 15 | 4 14 | bitrid | |- ( N e. RR -> ( -u N e. NN0 <-> ( -u N e. NN \/ N = 0 ) ) ) |
| 16 | 3 15 | orbi12d | |- ( N e. RR -> ( ( N e. NN0 \/ -u N e. NN0 ) <-> ( ( N e. NN \/ N = 0 ) \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 17 | 3orass | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N = 0 \/ ( N e. NN \/ -u N e. NN ) ) ) |
|
| 18 | orcom | |- ( ( N = 0 \/ ( N e. NN \/ -u N e. NN ) ) <-> ( ( N e. NN \/ -u N e. NN ) \/ N = 0 ) ) |
|
| 19 | orordir | |- ( ( ( N e. NN \/ -u N e. NN ) \/ N = 0 ) <-> ( ( N e. NN \/ N = 0 ) \/ ( -u N e. NN \/ N = 0 ) ) ) |
|
| 20 | 17 18 19 | 3bitrri | |- ( ( ( N e. NN \/ N = 0 ) \/ ( -u N e. NN \/ N = 0 ) ) <-> ( N = 0 \/ N e. NN \/ -u N e. NN ) ) |
| 21 | 16 20 | bitr2di | |- ( N e. RR -> ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| 22 | 21 | pm5.32i | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| 23 | 1 22 | bitri | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |