This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> ( C x. B ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divval | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
|
| 2 | 1 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
| 3 | 2 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) = ( iota_ x e. CC ( C x. x ) = A ) ) |
| 4 | 3 | eqeq1d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
| 5 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 6 | receu | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> E! x e. CC ( C x. x ) = A ) |
|
| 7 | 6 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> E! x e. CC ( C x. x ) = A ) |
| 8 | oveq2 | |- ( x = B -> ( C x. x ) = ( C x. B ) ) |
|
| 9 | 8 | eqeq1d | |- ( x = B -> ( ( C x. x ) = A <-> ( C x. B ) = A ) ) |
| 10 | 9 | riota2 | |- ( ( B e. CC /\ E! x e. CC ( C x. x ) = A ) -> ( ( C x. B ) = A <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
| 11 | 5 7 10 | 3imp3i2an | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) = A <-> ( iota_ x e. CC ( C x. x ) = A ) = B ) ) |
| 12 | 4 11 | bitr4d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> ( C x. B ) = A ) ) |