This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997) (Revised by Mario Carneiro, 21-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subadd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( B + C ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) ) |
|
| 2 | 1 | eqeq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = C <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 4 | negeu | |- ( ( B e. CC /\ A e. CC ) -> E! x e. CC ( B + x ) = A ) |
|
| 5 | oveq2 | |- ( x = C -> ( B + x ) = ( B + C ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = C -> ( ( B + x ) = A <-> ( B + C ) = A ) ) |
| 7 | 6 | riota2 | |- ( ( C e. CC /\ E! x e. CC ( B + x ) = A ) -> ( ( B + C ) = A <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 8 | 4 7 | sylan2 | |- ( ( C e. CC /\ ( B e. CC /\ A e. CC ) ) -> ( ( B + C ) = A <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 9 | 8 | 3impb | |- ( ( C e. CC /\ B e. CC /\ A e. CC ) -> ( ( B + C ) = A <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 10 | 9 | 3com13 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + C ) = A <-> ( iota_ x e. CC ( B + x ) = A ) = C ) ) |
| 11 | 3 10 | bitr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( B + C ) = A ) ) |