This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.17 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.17 | |- ( ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) <-> ( ph <-> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | |- ( ( ph <-> -. ps ) <-> ( -. ps <-> ph ) ) |
|
| 2 | dfbi2 | |- ( ( -. ps <-> ph ) <-> ( ( -. ps -> ph ) /\ ( ph -> -. ps ) ) ) |
|
| 3 | orcom | |- ( ( ph \/ ps ) <-> ( ps \/ ph ) ) |
|
| 4 | df-or | |- ( ( ps \/ ph ) <-> ( -. ps -> ph ) ) |
|
| 5 | 3 4 | bitr2i | |- ( ( -. ps -> ph ) <-> ( ph \/ ps ) ) |
| 6 | imnan | |- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |
|
| 7 | 5 6 | anbi12i | |- ( ( ( -. ps -> ph ) /\ ( ph -> -. ps ) ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) ) |
| 8 | 1 2 7 | 3bitrri | |- ( ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) <-> ( ph <-> -. ps ) ) |