This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmophm.1 | |- T e. BndLinOp |
|
| Assertion | nmophmi | |- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | |- T e. BndLinOp |
|
| 2 | bdopf | |- ( T e. BndLinOp -> T : ~H --> ~H ) |
|
| 3 | 1 2 | ax-mp | |- T : ~H --> ~H |
| 4 | homval | |- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
|
| 5 | 3 4 | mp3an2 | |- ( ( A e. CC /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 6 | 5 | fveq2d | |- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( normh ` ( A .h ( T ` x ) ) ) ) |
| 7 | 3 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 8 | norm-iii | |- ( ( A e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( A .h ( T ` x ) ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. CC /\ x e. ~H ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 11 | 10 | adantr | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) = ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) ) |
| 12 | normcl | |- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
|
| 13 | 7 12 | syl | |- ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
| 14 | 13 | ad2antlr | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) e. RR ) |
| 15 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 16 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 17 | 15 16 | jca | |- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 19 | nmoplb | |- ( ( T : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
|
| 20 | 3 19 | mp3an1 | |- ( ( x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
| 21 | 20 | adantll | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) |
| 22 | nmopre | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
|
| 23 | 1 22 | ax-mp | |- ( normop ` T ) e. RR |
| 24 | lemul2a | |- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
|
| 25 | 23 24 | mp3anl2 | |- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( normop ` T ) ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 26 | 14 18 21 25 | syl21anc | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 27 | 11 26 | eqbrtrd | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 28 | 27 | ex | |- ( ( A e. CC /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
| 29 | 28 | ralrimiva | |- ( A e. CC -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) |
| 30 | homulcl | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
|
| 31 | 3 30 | mpan2 | |- ( A e. CC -> ( A .op T ) : ~H --> ~H ) |
| 32 | remulcl | |- ( ( ( abs ` A ) e. RR /\ ( normop ` T ) e. RR ) -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
|
| 33 | 15 23 32 | sylancl | |- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 34 | 33 | rexrd | |- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) |
| 35 | nmopub | |- ( ( ( A .op T ) : ~H --> ~H /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR* ) -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
|
| 36 | 31 34 35 | syl2anc | |- ( A e. CC -> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) ) |
| 37 | 29 36 | mpbird | |- ( A e. CC -> ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 38 | fveq2 | |- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
|
| 39 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 40 | 38 39 | eqtrdi | |- ( A = 0 -> ( abs ` A ) = 0 ) |
| 41 | 40 | oveq1d | |- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = ( 0 x. ( normop ` T ) ) ) |
| 42 | 23 | recni | |- ( normop ` T ) e. CC |
| 43 | 42 | mul02i | |- ( 0 x. ( normop ` T ) ) = 0 |
| 44 | 41 43 | eqtrdi | |- ( A = 0 -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
| 45 | 44 | adantl | |- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) = 0 ) |
| 46 | nmopge0 | |- ( ( A .op T ) : ~H --> ~H -> 0 <_ ( normop ` ( A .op T ) ) ) |
|
| 47 | 31 46 | syl | |- ( A e. CC -> 0 <_ ( normop ` ( A .op T ) ) ) |
| 48 | 47 | adantr | |- ( ( A e. CC /\ A = 0 ) -> 0 <_ ( normop ` ( A .op T ) ) ) |
| 49 | 45 48 | eqbrtrd | |- ( ( A e. CC /\ A = 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 50 | nmoplb | |- ( ( ( A .op T ) : ~H --> ~H /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
|
| 51 | 31 50 | syl3an1 | |- ( ( A e. CC /\ x e. ~H /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
| 52 | 51 | 3expa | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( ( A .op T ) ` x ) ) <_ ( normop ` ( A .op T ) ) ) |
| 53 | 11 52 | eqbrtrrd | |- ( ( ( A e. CC /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
| 54 | 53 | adantllr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) ) |
| 55 | 13 | adantl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
| 56 | nmopxr | |- ( ( A .op T ) : ~H --> ~H -> ( normop ` ( A .op T ) ) e. RR* ) |
|
| 57 | 31 56 | syl | |- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR* ) |
| 58 | nmopgtmnf | |- ( ( A .op T ) : ~H --> ~H -> -oo < ( normop ` ( A .op T ) ) ) |
|
| 59 | 31 58 | syl | |- ( A e. CC -> -oo < ( normop ` ( A .op T ) ) ) |
| 60 | xrre | |- ( ( ( ( normop ` ( A .op T ) ) e. RR* /\ ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) /\ ( -oo < ( normop ` ( A .op T ) ) /\ ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) ) ) -> ( normop ` ( A .op T ) ) e. RR ) |
|
| 61 | 57 33 59 37 60 | syl22anc | |- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR ) |
| 62 | 61 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( normop ` ( A .op T ) ) e. RR ) |
| 63 | 15 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( abs ` A ) e. RR ) |
| 64 | absgt0 | |- ( A e. CC -> ( A =/= 0 <-> 0 < ( abs ` A ) ) ) |
|
| 65 | 64 | biimpa | |- ( ( A e. CC /\ A =/= 0 ) -> 0 < ( abs ` A ) ) |
| 66 | 65 | adantr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> 0 < ( abs ` A ) ) |
| 67 | lemuldiv2 | |- ( ( ( normh ` ( T ` x ) ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
|
| 68 | 55 62 63 66 67 | syl112anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 69 | 68 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( ( ( abs ` A ) x. ( normh ` ( T ` x ) ) ) <_ ( normop ` ( A .op T ) ) <-> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 70 | 54 69 | mpbid | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) /\ ( normh ` x ) <_ 1 ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
| 71 | 70 | ex | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ~H ) -> ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 72 | 71 | ralrimiva | |- ( ( A e. CC /\ A =/= 0 ) -> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 73 | 61 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` ( A .op T ) ) e. RR ) |
| 74 | 15 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 75 | abs00 | |- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
|
| 76 | 75 | necon3bid | |- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 77 | 76 | biimpar | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 78 | 73 74 77 | redivcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR ) |
| 79 | 78 | rexrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) |
| 80 | nmopub | |- ( ( T : ~H --> ~H /\ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) e. RR* ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
|
| 81 | 3 79 80 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) <-> A. x e. ~H ( ( normh ` x ) <_ 1 -> ( normh ` ( T ` x ) ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) ) |
| 82 | 72 81 | mpbird | |- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) |
| 83 | 23 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> ( normop ` T ) e. RR ) |
| 84 | lemuldiv2 | |- ( ( ( normop ` T ) e. RR /\ ( normop ` ( A .op T ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
|
| 85 | 83 73 74 65 84 | syl112anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) <-> ( normop ` T ) <_ ( ( normop ` ( A .op T ) ) / ( abs ` A ) ) ) ) |
| 86 | 82 85 | mpbird | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 87 | 49 86 | pm2.61dane | |- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) |
| 88 | 61 33 | letri3d | |- ( A e. CC -> ( ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) <-> ( ( normop ` ( A .op T ) ) <_ ( ( abs ` A ) x. ( normop ` T ) ) /\ ( ( abs ` A ) x. ( normop ` T ) ) <_ ( normop ` ( A .op T ) ) ) ) ) |
| 89 | 37 87 88 | mpbir2and | |- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |