This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopxr | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopval | |- ( T : ~H --> ~H -> ( normop ` T ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) ) |
|
| 2 | nmopsetretHIL | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |
|
| 3 | ressxr | |- RR C_ RR* |
|
| 4 | 2 3 | sstrdi | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR* ) |
| 5 | supxrcl | |- ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR* -> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) e. RR* ) |
|
| 6 | 4 5 | syl | |- ( T : ~H --> ~H -> sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } , RR* , < ) e. RR* ) |
| 7 | 1 6 | eqeltrd | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |