This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopgtmnf | |- ( T : ~H --> ~H -> -oo < ( normop ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoprepnf | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> ( normop ` T ) =/= +oo ) ) |
|
| 2 | df-ne | |- ( ( normop ` T ) =/= +oo <-> -. ( normop ` T ) = +oo ) |
|
| 3 | 1 2 | bitrdi | |- ( T : ~H --> ~H -> ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) ) |
| 4 | xor3 | |- ( -. ( ( normop ` T ) e. RR <-> ( normop ` T ) = +oo ) <-> ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) ) |
|
| 5 | nbior | |- ( -. ( ( normop ` T ) e. RR <-> ( normop ` T ) = +oo ) -> ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) ) |
|
| 6 | 4 5 | sylbir | |- ( ( ( normop ` T ) e. RR <-> -. ( normop ` T ) = +oo ) -> ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) ) |
| 7 | mnfltxr | |- ( ( ( normop ` T ) e. RR \/ ( normop ` T ) = +oo ) -> -oo < ( normop ` T ) ) |
|
| 8 | 3 6 7 | 3syl | |- ( T : ~H --> ~H -> -oo < ( normop ` T ) ) |