This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmophm.1 | ⊢ 𝑇 ∈ BndLinOp | |
| Assertion | nmophmi | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | ⊢ 𝑇 ∈ BndLinOp | |
| 2 | bdopf | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 4 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 5 | 3 4 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 7 | 3 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 8 | norm-iii | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 12 | normcl | ⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 13 | 7 12 | syl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 15 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 16 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 17 | 15 16 | jca | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 19 | nmoplb | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) | |
| 20 | 3 19 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 21 | 20 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 22 | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 23 | 1 22 | ax-mp | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 24 | lemul2a | ⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) | |
| 25 | 23 24 | mp3anl2 | ⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 26 | 14 18 21 25 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 27 | 11 26 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 28 | 27 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 30 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 31 | 3 30 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 32 | remulcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) | |
| 33 | 15 23 32 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 34 | 33 | rexrd | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) |
| 35 | nmopub | ⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) | |
| 36 | 31 34 35 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
| 37 | 29 36 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 39 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 40 | 38 39 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 41 | 40 | oveq1d | ⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = ( 0 · ( normop ‘ 𝑇 ) ) ) |
| 42 | 23 | recni | ⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 43 | 42 | mul02i | ⊢ ( 0 · ( normop ‘ 𝑇 ) ) = 0 |
| 44 | 41 43 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 45 | 44 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 46 | nmopge0 | ⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) | |
| 47 | 31 46 | syl | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 49 | 45 48 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 50 | nmoplb | ⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) | |
| 51 | 31 50 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 52 | 51 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 53 | 11 52 | eqbrtrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 54 | 53 | adantllr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 55 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 56 | nmopxr | ⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) | |
| 57 | 31 56 | syl | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) |
| 58 | nmopgtmnf | ⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) | |
| 59 | 31 58 | syl | ⊢ ( 𝐴 ∈ ℂ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 60 | xrre | ⊢ ( ( ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) ∧ ( -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) | |
| 61 | 57 33 59 37 60 | syl22anc | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 63 | 15 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 64 | absgt0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) ) | |
| 65 | 64 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → 0 < ( abs ‘ 𝐴 ) ) |
| 67 | lemuldiv2 | ⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) | |
| 68 | 55 62 63 66 67 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 70 | 54 69 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 71 | 70 | ex | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 72 | 71 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 73 | 61 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 74 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 75 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 76 | 75 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 77 | 76 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 78 | 73 74 77 | redivcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 79 | 78 | rexrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) |
| 80 | nmopub | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) | |
| 81 | 3 79 80 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 82 | 72 81 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 83 | 23 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 84 | lemuldiv2 | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) | |
| 85 | 83 73 74 65 84 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 86 | 82 85 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 87 | 49 86 | pm2.61dane | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 88 | 61 33 | letri3d | ⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) ) ) |
| 89 | 37 87 88 | mpbir2and | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |