This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmophm.1 | |- T e. BndLinOp |
|
| Assertion | bdophmi | |- ( A e. CC -> ( A .op T ) e. BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | |- T e. BndLinOp |
|
| 2 | bdopln | |- ( T e. BndLinOp -> T e. LinOp ) |
|
| 3 | 1 2 | ax-mp | |- T e. LinOp |
| 4 | 3 | lnopmi | |- ( A e. CC -> ( A .op T ) e. LinOp ) |
| 5 | 1 | nmophmi | |- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 6 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 7 | nmopre | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
|
| 8 | 1 7 | ax-mp | |- ( normop ` T ) e. RR |
| 9 | remulcl | |- ( ( ( abs ` A ) e. RR /\ ( normop ` T ) e. RR ) -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
|
| 10 | 6 8 9 | sylancl | |- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 11 | 5 10 | eqeltrd | |- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR ) |
| 12 | elbdop2 | |- ( ( A .op T ) e. BndLinOp <-> ( ( A .op T ) e. LinOp /\ ( normop ` ( A .op T ) ) e. RR ) ) |
|
| 13 | 4 11 12 | sylanbrc | |- ( A e. CC -> ( A .op T ) e. BndLinOp ) |