This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopre | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopf | |- ( T e. BndLinOp -> T : ~H --> ~H ) |
|
| 2 | nmopgtmnf | |- ( T : ~H --> ~H -> -oo < ( normop ` T ) ) |
|
| 3 | 1 2 | syl | |- ( T e. BndLinOp -> -oo < ( normop ` T ) ) |
| 4 | elbdop | |- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) ) |
|
| 5 | 4 | simprbi | |- ( T e. BndLinOp -> ( normop ` T ) < +oo ) |
| 6 | nmopxr | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
|
| 7 | xrrebnd | |- ( ( normop ` T ) e. RR* -> ( ( normop ` T ) e. RR <-> ( -oo < ( normop ` T ) /\ ( normop ` T ) < +oo ) ) ) |
|
| 8 | 1 6 7 | 3syl | |- ( T e. BndLinOp -> ( ( normop ` T ) e. RR <-> ( -oo < ( normop ` T ) /\ ( normop ` T ) < +oo ) ) ) |
| 9 | 3 5 8 | mpbir2and | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |