This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homulcl | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | |- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
|
| 2 | hvmulcl | |- ( ( A e. CC /\ ( T ` x ) e. ~H ) -> ( A .h ( T ` x ) ) e. ~H ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( A .h ( T ` x ) ) e. ~H ) |
| 4 | 3 | anassrs | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( T ` x ) ) e. ~H ) |
| 5 | 4 | fmpttd | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( x e. ~H |-> ( A .h ( T ` x ) ) ) : ~H --> ~H ) |
| 6 | hommval | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
|
| 7 | 6 | feq1d | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H <-> ( x e. ~H |-> ( A .h ( T ` x ) ) ) : ~H --> ~H ) ) |
| 8 | 5 7 | mpbird | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |