This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homval | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( ( A .op T ) ` B ) = ( A .h ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hommval | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( ( A .op T ) ` B ) = ( ( x e. ~H |-> ( A .h ( T ` x ) ) ) ` B ) ) |
| 3 | fveq2 | |- ( x = B -> ( T ` x ) = ( T ` B ) ) |
|
| 4 | 3 | oveq2d | |- ( x = B -> ( A .h ( T ` x ) ) = ( A .h ( T ` B ) ) ) |
| 5 | eqid | |- ( x e. ~H |-> ( A .h ( T ` x ) ) ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) |
|
| 6 | ovex | |- ( A .h ( T ` B ) ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( B e. ~H -> ( ( x e. ~H |-> ( A .h ( T ` x ) ) ) ` B ) = ( A .h ( T ` B ) ) ) |
| 8 | 2 7 | sylan9eq | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ B e. ~H ) -> ( ( A .op T ) ` B ) = ( A .h ( T ` B ) ) ) |
| 9 | 8 | 3impa | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( ( A .op T ) ` B ) = ( A .h ( T ` B ) ) ) |