This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm-iii | |- ( ( A e. CC /\ B e. ~H ) -> ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( normh ` ( A .h B ) ) = ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) ) |
|
| 2 | fveq2 | |- ( A = if ( A e. CC , A , 0 ) -> ( abs ` A ) = ( abs ` if ( A e. CC , A , 0 ) ) ) |
|
| 3 | 2 | oveq1d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( abs ` A ) x. ( normh ` B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) <-> ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CC , A , 0 ) .h B ) = ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` B ) = ( normh ` if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) <-> ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 | 0cn | |- 0 e. CC |
|
| 11 | 10 | elimel | |- if ( A e. CC , A , 0 ) e. CC |
| 12 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 13 | 11 12 | norm-iii-i | |- ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) |
| 14 | 4 9 13 | dedth2h | |- ( ( A e. CC /\ B e. ~H ) -> ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) ) |