This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rational numbers are dense in RR : any two real numbers have a rational between them. Exercise 6 of Apostol p. 28. (Contributed by NM, 18-Nov-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qbtwnre | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posdif | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
|
| 2 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 3 | nnrecl | |- ( ( ( B - A ) e. RR /\ 0 < ( B - A ) ) -> E. y e. NN ( 1 / y ) < ( B - A ) ) |
|
| 4 | 2 3 | sylan | |- ( ( ( B e. RR /\ A e. RR ) /\ 0 < ( B - A ) ) -> E. y e. NN ( 1 / y ) < ( B - A ) ) |
| 5 | 4 | ex | |- ( ( B e. RR /\ A e. RR ) -> ( 0 < ( B - A ) -> E. y e. NN ( 1 / y ) < ( B - A ) ) ) |
| 6 | 5 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( B - A ) -> E. y e. NN ( 1 / y ) < ( B - A ) ) ) |
| 7 | 1 6 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> E. y e. NN ( 1 / y ) < ( B - A ) ) ) |
| 8 | nnre | |- ( y e. NN -> y e. RR ) |
|
| 9 | 8 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> y e. RR ) |
| 10 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> B e. RR ) |
|
| 11 | 9 10 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> ( y x. B ) e. RR ) |
| 12 | peano2rem | |- ( ( y x. B ) e. RR -> ( ( y x. B ) - 1 ) e. RR ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> ( ( y x. B ) - 1 ) e. RR ) |
| 14 | zbtwnre | |- ( ( ( y x. B ) - 1 ) e. RR -> E! z e. ZZ ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) ) |
|
| 15 | reurex | |- ( E! z e. ZZ ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) -> E. z e. ZZ ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> E. z e. ZZ ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) ) |
| 17 | znq | |- ( ( z e. ZZ /\ y e. NN ) -> ( z / y ) e. QQ ) |
|
| 18 | 17 | ancoms | |- ( ( y e. NN /\ z e. ZZ ) -> ( z / y ) e. QQ ) |
| 19 | 18 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( z / y ) e. QQ ) |
| 20 | an32 | |- ( ( ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) /\ ( 1 / y ) < ( B - A ) ) <-> ( ( ( ( y x. B ) - 1 ) <_ z /\ ( 1 / y ) < ( B - A ) ) /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) ) |
|
| 21 | 8 | ad2antrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> y e. RR ) |
| 22 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> A e. RR ) |
|
| 23 | 21 22 | remulcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( y x. A ) e. RR ) |
| 24 | 13 | adantrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( y x. B ) - 1 ) e. RR ) |
| 25 | zre | |- ( z e. ZZ -> z e. RR ) |
|
| 26 | 25 | ad2antll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> z e. RR ) |
| 27 | ltletr | |- ( ( ( y x. A ) e. RR /\ ( ( y x. B ) - 1 ) e. RR /\ z e. RR ) -> ( ( ( y x. A ) < ( ( y x. B ) - 1 ) /\ ( ( y x. B ) - 1 ) <_ z ) -> ( y x. A ) < z ) ) |
|
| 28 | 23 24 26 27 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( y x. A ) < ( ( y x. B ) - 1 ) /\ ( ( y x. B ) - 1 ) <_ z ) -> ( y x. A ) < z ) ) |
| 29 | 21 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> y e. CC ) |
| 30 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> B e. RR ) |
|
| 31 | 30 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> B e. CC ) |
| 32 | 22 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> A e. CC ) |
| 33 | 29 31 32 | subdid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( y x. ( B - A ) ) = ( ( y x. B ) - ( y x. A ) ) ) |
| 34 | 33 | breq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( 1 < ( y x. ( B - A ) ) <-> 1 < ( ( y x. B ) - ( y x. A ) ) ) ) |
| 35 | 1red | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> 1 e. RR ) |
|
| 36 | 30 22 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( B - A ) e. RR ) |
| 37 | nngt0 | |- ( y e. NN -> 0 < y ) |
|
| 38 | 37 | ad2antrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> 0 < y ) |
| 39 | ltdivmul | |- ( ( 1 e. RR /\ ( B - A ) e. RR /\ ( y e. RR /\ 0 < y ) ) -> ( ( 1 / y ) < ( B - A ) <-> 1 < ( y x. ( B - A ) ) ) ) |
|
| 40 | 35 36 21 38 39 | syl112anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( 1 / y ) < ( B - A ) <-> 1 < ( y x. ( B - A ) ) ) ) |
| 41 | 11 | adantrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( y x. B ) e. RR ) |
| 42 | ltsub13 | |- ( ( ( y x. A ) e. RR /\ ( y x. B ) e. RR /\ 1 e. RR ) -> ( ( y x. A ) < ( ( y x. B ) - 1 ) <-> 1 < ( ( y x. B ) - ( y x. A ) ) ) ) |
|
| 43 | 23 41 35 42 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( y x. A ) < ( ( y x. B ) - 1 ) <-> 1 < ( ( y x. B ) - ( y x. A ) ) ) ) |
| 44 | 34 40 43 | 3bitr4rd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( y x. A ) < ( ( y x. B ) - 1 ) <-> ( 1 / y ) < ( B - A ) ) ) |
| 45 | 44 | anbi1d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( y x. A ) < ( ( y x. B ) - 1 ) /\ ( ( y x. B ) - 1 ) <_ z ) <-> ( ( 1 / y ) < ( B - A ) /\ ( ( y x. B ) - 1 ) <_ z ) ) ) |
| 46 | 45 | biancomd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( y x. A ) < ( ( y x. B ) - 1 ) /\ ( ( y x. B ) - 1 ) <_ z ) <-> ( ( ( y x. B ) - 1 ) <_ z /\ ( 1 / y ) < ( B - A ) ) ) ) |
| 47 | ltmuldiv2 | |- ( ( A e. RR /\ z e. RR /\ ( y e. RR /\ 0 < y ) ) -> ( ( y x. A ) < z <-> A < ( z / y ) ) ) |
|
| 48 | 22 26 21 38 47 | syl112anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( y x. A ) < z <-> A < ( z / y ) ) ) |
| 49 | 28 46 48 | 3imtr3d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( ( y x. B ) - 1 ) <_ z /\ ( 1 / y ) < ( B - A ) ) -> A < ( z / y ) ) ) |
| 50 | 41 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( y x. B ) e. CC ) |
| 51 | ax-1cn | |- 1 e. CC |
|
| 52 | npcan | |- ( ( ( y x. B ) e. CC /\ 1 e. CC ) -> ( ( ( y x. B ) - 1 ) + 1 ) = ( y x. B ) ) |
|
| 53 | 50 51 52 | sylancl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( y x. B ) - 1 ) + 1 ) = ( y x. B ) ) |
| 54 | 53 | breq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( z < ( ( ( y x. B ) - 1 ) + 1 ) <-> z < ( y x. B ) ) ) |
| 55 | ltdivmul | |- ( ( z e. RR /\ B e. RR /\ ( y e. RR /\ 0 < y ) ) -> ( ( z / y ) < B <-> z < ( y x. B ) ) ) |
|
| 56 | 26 30 21 38 55 | syl112anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( z / y ) < B <-> z < ( y x. B ) ) ) |
| 57 | 54 56 | bitr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( z < ( ( ( y x. B ) - 1 ) + 1 ) <-> ( z / y ) < B ) ) |
| 58 | 57 | biimpd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( z < ( ( ( y x. B ) - 1 ) + 1 ) -> ( z / y ) < B ) ) |
| 59 | 49 58 | anim12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( ( ( y x. B ) - 1 ) <_ z /\ ( 1 / y ) < ( B - A ) ) /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) -> ( A < ( z / y ) /\ ( z / y ) < B ) ) ) |
| 60 | 20 59 | biimtrid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) /\ ( 1 / y ) < ( B - A ) ) -> ( A < ( z / y ) /\ ( z / y ) < B ) ) ) |
| 61 | breq2 | |- ( x = ( z / y ) -> ( A < x <-> A < ( z / y ) ) ) |
|
| 62 | breq1 | |- ( x = ( z / y ) -> ( x < B <-> ( z / y ) < B ) ) |
|
| 63 | 61 62 | anbi12d | |- ( x = ( z / y ) -> ( ( A < x /\ x < B ) <-> ( A < ( z / y ) /\ ( z / y ) < B ) ) ) |
| 64 | 63 | rspcev | |- ( ( ( z / y ) e. QQ /\ ( A < ( z / y ) /\ ( z / y ) < B ) ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 65 | 19 60 64 | syl6an | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) /\ ( 1 / y ) < ( B - A ) ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 66 | 65 | expd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. NN /\ z e. ZZ ) ) -> ( ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) -> ( ( 1 / y ) < ( B - A ) -> E. x e. QQ ( A < x /\ x < B ) ) ) ) |
| 67 | 66 | expr | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> ( z e. ZZ -> ( ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) -> ( ( 1 / y ) < ( B - A ) -> E. x e. QQ ( A < x /\ x < B ) ) ) ) ) |
| 68 | 67 | rexlimdv | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> ( E. z e. ZZ ( ( ( y x. B ) - 1 ) <_ z /\ z < ( ( ( y x. B ) - 1 ) + 1 ) ) -> ( ( 1 / y ) < ( B - A ) -> E. x e. QQ ( A < x /\ x < B ) ) ) ) |
| 69 | 16 68 | mpd | |- ( ( ( A e. RR /\ B e. RR ) /\ y e. NN ) -> ( ( 1 / y ) < ( B - A ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 70 | 69 | rexlimdva | |- ( ( A e. RR /\ B e. RR ) -> ( E. y e. NN ( 1 / y ) < ( B - A ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 71 | 7 70 | syld | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 72 | 71 | 3impia | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |