This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmeq0.z | |- .0. = ( 0g ` G ) |
||
| Assertion | nmrpcl | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmeq0.z | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 | nmcl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| 5 | 4 | 3adant3 | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) e. RR ) |
| 6 | 1 2 | nmge0 | |- ( ( G e. NrmGrp /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 7 | 6 | 3adant3 | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> 0 <_ ( N ` A ) ) |
| 8 | 1 2 3 | nmne0 | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) =/= 0 ) |
| 9 | 5 7 8 | ne0gt0d | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> 0 < ( N ` A ) ) |
| 10 | 5 9 | elrpd | |- ( ( G e. NrmGrp /\ A e. X /\ A =/= .0. ) -> ( N ` A ) e. RR+ ) |