This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlin.k | |- K = ( Scalar ` S ) |
|
| lmhmlin.b | |- B = ( Base ` K ) |
||
| lmhmlin.e | |- E = ( Base ` S ) |
||
| lmhmlin.m | |- .x. = ( .s ` S ) |
||
| lmhmlin.n | |- .X. = ( .s ` T ) |
||
| Assertion | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlin.k | |- K = ( Scalar ` S ) |
|
| 2 | lmhmlin.b | |- B = ( Base ` K ) |
|
| 3 | lmhmlin.e | |- E = ( Base ` S ) |
|
| 4 | lmhmlin.m | |- .x. = ( .s ` S ) |
|
| 5 | lmhmlin.n | |- .X. = ( .s ` T ) |
|
| 6 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 7 | 1 6 2 3 4 5 | islmhm | |- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) ) |
| 8 | 7 | simprbi | |- ( F e. ( S LMHom T ) -> ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) |
| 9 | 8 | simp3d | |- ( F e. ( S LMHom T ) -> A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) |
| 10 | fvoveq1 | |- ( a = X -> ( F ` ( a .x. b ) ) = ( F ` ( X .x. b ) ) ) |
|
| 11 | oveq1 | |- ( a = X -> ( a .X. ( F ` b ) ) = ( X .X. ( F ` b ) ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( a = X -> ( ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) <-> ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) ) ) |
| 13 | oveq2 | |- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
|
| 14 | 13 | fveq2d | |- ( b = Y -> ( F ` ( X .x. b ) ) = ( F ` ( X .x. Y ) ) ) |
| 15 | fveq2 | |- ( b = Y -> ( F ` b ) = ( F ` Y ) ) |
|
| 16 | 15 | oveq2d | |- ( b = Y -> ( X .X. ( F ` b ) ) = ( X .X. ( F ` Y ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( b = Y -> ( ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) <-> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
| 18 | 12 17 | rspc2v | |- ( ( X e. B /\ Y e. E ) -> ( A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
| 19 | 9 18 | syl5com | |- ( F e. ( S LMHom T ) -> ( ( X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) ) |
| 20 | 19 | 3impib | |- ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) |