This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
| clmsub.k | |- K = ( Base ` F ) |
||
| Assertion | clmabs | |- ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | clmsub.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s K ) ) |
| 4 | 3 | fveq2d | |- ( W e. CMod -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
| 5 | 4 | adantr | |- ( ( W e. CMod /\ A e. K ) -> ( norm ` F ) = ( norm ` ( CCfld |`s K ) ) ) |
| 6 | 5 | fveq1d | |- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` F ) ` A ) = ( ( norm ` ( CCfld |`s K ) ) ` A ) ) |
| 7 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 8 | subrgsubg | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
|
| 9 | 7 8 | syl | |- ( W e. CMod -> K e. ( SubGrp ` CCfld ) ) |
| 10 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 11 | cnfldnm | |- abs = ( norm ` CCfld ) |
|
| 12 | eqid | |- ( norm ` ( CCfld |`s K ) ) = ( norm ` ( CCfld |`s K ) ) |
|
| 13 | 10 11 12 | subgnm2 | |- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
| 14 | 9 13 | sylan | |- ( ( W e. CMod /\ A e. K ) -> ( ( norm ` ( CCfld |`s K ) ) ` A ) = ( abs ` A ) ) |
| 15 | 6 14 | eqtr2d | |- ( ( W e. CMod /\ A e. K ) -> ( abs ` A ) = ( ( norm ` F ) ` A ) ) |