This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnlm.v | |- V = ( Base ` W ) |
|
| isnlm.n | |- N = ( norm ` W ) |
||
| isnlm.s | |- .x. = ( .s ` W ) |
||
| isnlm.f | |- F = ( Scalar ` W ) |
||
| isnlm.k | |- K = ( Base ` F ) |
||
| isnlm.a | |- A = ( norm ` F ) |
||
| Assertion | nmvs | |- ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlm.v | |- V = ( Base ` W ) |
|
| 2 | isnlm.n | |- N = ( norm ` W ) |
|
| 3 | isnlm.s | |- .x. = ( .s ` W ) |
|
| 4 | isnlm.f | |- F = ( Scalar ` W ) |
|
| 5 | isnlm.k | |- K = ( Base ` F ) |
|
| 6 | isnlm.a | |- A = ( norm ` F ) |
|
| 7 | 1 2 3 4 5 6 | isnlm | |- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |
| 8 | 7 | simprbi | |- ( W e. NrmMod -> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) |
| 9 | fvoveq1 | |- ( x = X -> ( N ` ( x .x. y ) ) = ( N ` ( X .x. y ) ) ) |
|
| 10 | fveq2 | |- ( x = X -> ( A ` x ) = ( A ` X ) ) |
|
| 11 | 10 | oveq1d | |- ( x = X -> ( ( A ` x ) x. ( N ` y ) ) = ( ( A ` X ) x. ( N ` y ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( x = X -> ( ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) <-> ( N ` ( X .x. y ) ) = ( ( A ` X ) x. ( N ` y ) ) ) ) |
| 13 | oveq2 | |- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
|
| 14 | 13 | fveq2d | |- ( y = Y -> ( N ` ( X .x. y ) ) = ( N ` ( X .x. Y ) ) ) |
| 15 | fveq2 | |- ( y = Y -> ( N ` y ) = ( N ` Y ) ) |
|
| 16 | 15 | oveq2d | |- ( y = Y -> ( ( A ` X ) x. ( N ` y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( y = Y -> ( ( N ` ( X .x. y ) ) = ( ( A ` X ) x. ( N ` y ) ) <-> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 18 | 12 17 | rspc2v | |- ( ( X e. K /\ Y e. V ) -> ( A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 19 | 8 18 | syl5com | |- ( W e. NrmMod -> ( ( X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) ) |
| 20 | 19 | 3impib | |- ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( A ` X ) x. ( N ` Y ) ) ) |