This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( A .ih A ) e. RR ) |
| 3 | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
|
| 4 | sqrtgt0 | |- ( ( ( A .ih A ) e. RR /\ 0 < ( A .ih A ) ) -> 0 < ( sqrt ` ( A .ih A ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( sqrt ` ( A .ih A ) ) ) |
| 6 | 5 | ex | |- ( A e. ~H -> ( A =/= 0h -> 0 < ( sqrt ` ( A .ih A ) ) ) ) |
| 7 | oveq1 | |- ( A = 0h -> ( A .ih A ) = ( 0h .ih A ) ) |
|
| 8 | hi01 | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
|
| 9 | 7 8 | sylan9eqr | |- ( ( A e. ~H /\ A = 0h ) -> ( A .ih A ) = 0 ) |
| 10 | 9 | fveq2d | |- ( ( A e. ~H /\ A = 0h ) -> ( sqrt ` ( A .ih A ) ) = ( sqrt ` 0 ) ) |
| 11 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 12 | 10 11 | eqtrdi | |- ( ( A e. ~H /\ A = 0h ) -> ( sqrt ` ( A .ih A ) ) = 0 ) |
| 13 | 12 | ex | |- ( A e. ~H -> ( A = 0h -> ( sqrt ` ( A .ih A ) ) = 0 ) ) |
| 14 | hiidge0 | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
|
| 15 | 1 14 | resqrtcld | |- ( A e. ~H -> ( sqrt ` ( A .ih A ) ) e. RR ) |
| 16 | 0re | |- 0 e. RR |
|
| 17 | lttri3 | |- ( ( ( sqrt ` ( A .ih A ) ) e. RR /\ 0 e. RR ) -> ( ( sqrt ` ( A .ih A ) ) = 0 <-> ( -. ( sqrt ` ( A .ih A ) ) < 0 /\ -. 0 < ( sqrt ` ( A .ih A ) ) ) ) ) |
|
| 18 | 15 16 17 | sylancl | |- ( A e. ~H -> ( ( sqrt ` ( A .ih A ) ) = 0 <-> ( -. ( sqrt ` ( A .ih A ) ) < 0 /\ -. 0 < ( sqrt ` ( A .ih A ) ) ) ) ) |
| 19 | simpr | |- ( ( -. ( sqrt ` ( A .ih A ) ) < 0 /\ -. 0 < ( sqrt ` ( A .ih A ) ) ) -> -. 0 < ( sqrt ` ( A .ih A ) ) ) |
|
| 20 | 18 19 | biimtrdi | |- ( A e. ~H -> ( ( sqrt ` ( A .ih A ) ) = 0 -> -. 0 < ( sqrt ` ( A .ih A ) ) ) ) |
| 21 | 13 20 | syld | |- ( A e. ~H -> ( A = 0h -> -. 0 < ( sqrt ` ( A .ih A ) ) ) ) |
| 22 | 21 | necon2ad | |- ( A e. ~H -> ( 0 < ( sqrt ` ( A .ih A ) ) -> A =/= 0h ) ) |
| 23 | 6 22 | impbid | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( sqrt ` ( A .ih A ) ) ) ) |
| 24 | normval | |- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
|
| 25 | 24 | breq2d | |- ( A e. ~H -> ( 0 < ( normh ` A ) <-> 0 < ( sqrt ` ( A .ih A ) ) ) ) |
| 26 | 23 25 | bitr4d | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |