This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the zero Hilbert space operator (null projector). Remark in Beran p. 111. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ho0val | |- ( A e. ~H -> ( 0hop ` A ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choc1 | |- ( _|_ ` ~H ) = 0H |
|
| 2 | 1 | fveq2i | |- ( projh ` ( _|_ ` ~H ) ) = ( projh ` 0H ) |
| 3 | df-h0op | |- 0hop = ( projh ` 0H ) |
|
| 4 | 2 3 | eqtr4i | |- ( projh ` ( _|_ ` ~H ) ) = 0hop |
| 5 | 4 | fveq1i | |- ( ( projh ` ( _|_ ` ~H ) ) ` A ) = ( 0hop ` A ) |
| 6 | helch | |- ~H e. CH |
|
| 7 | pjo | |- ( ( ~H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` ~H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) ) |
|
| 8 | 6 7 | mpan | |- ( A e. ~H -> ( ( projh ` ( _|_ ` ~H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) ) |
| 9 | 5 8 | eqtr3id | |- ( A e. ~H -> ( 0hop ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) ) |
| 10 | 6 | pjhcli | |- ( A e. ~H -> ( ( projh ` ~H ) ` A ) e. ~H ) |
| 11 | hvsubid | |- ( ( ( projh ` ~H ) ` A ) e. ~H -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h ) |
|
| 12 | 10 11 | syl | |- ( A e. ~H -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h ) |
| 13 | 9 12 | eqtrd | |- ( A e. ~H -> ( 0hop ` A ) = 0h ) |