This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm-i | |- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 2 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 3 | normge0 | |- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | leltne | |- ( ( 0 e. RR /\ ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
|
| 6 | 4 5 | mp3an1 | |- ( ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
| 7 | 2 3 6 | syl2anc | |- ( A e. ~H -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
| 8 | 1 7 | bitrd | |- ( A e. ~H -> ( A =/= 0h <-> ( normh ` A ) =/= 0 ) ) |
| 9 | 8 | necon4bid | |- ( A e. ~H -> ( A = 0h <-> ( normh ` A ) = 0 ) ) |
| 10 | 9 | bicomd | |- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |