This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmop0 | |- ( normop ` 0hop ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | |- 0hop : ~H --> ~H |
|
| 2 | nmopval | |- ( 0hop : ~H --> ~H -> ( normop ` 0hop ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) ) |
|
| 3 | 1 2 | ax-mp | |- ( normop ` 0hop ) = sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) |
| 4 | ho0val | |- ( y e. ~H -> ( 0hop ` y ) = 0h ) |
|
| 5 | 4 | fveq2d | |- ( y e. ~H -> ( normh ` ( 0hop ` y ) ) = ( normh ` 0h ) ) |
| 6 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 7 | 5 6 | eqtrdi | |- ( y e. ~H -> ( normh ` ( 0hop ` y ) ) = 0 ) |
| 8 | 7 | eqeq2d | |- ( y e. ~H -> ( x = ( normh ` ( 0hop ` y ) ) <-> x = 0 ) ) |
| 9 | 8 | anbi2d | |- ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> ( ( normh ` y ) <_ 1 /\ x = 0 ) ) ) |
| 10 | 9 | rexbiia | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) ) |
| 11 | ax-hv0cl | |- 0h e. ~H |
|
| 12 | 0le1 | |- 0 <_ 1 |
|
| 13 | fveq2 | |- ( y = 0h -> ( normh ` y ) = ( normh ` 0h ) ) |
|
| 14 | 13 6 | eqtrdi | |- ( y = 0h -> ( normh ` y ) = 0 ) |
| 15 | 14 | breq1d | |- ( y = 0h -> ( ( normh ` y ) <_ 1 <-> 0 <_ 1 ) ) |
| 16 | 15 | rspcev | |- ( ( 0h e. ~H /\ 0 <_ 1 ) -> E. y e. ~H ( normh ` y ) <_ 1 ) |
| 17 | 11 12 16 | mp2an | |- E. y e. ~H ( normh ` y ) <_ 1 |
| 18 | r19.41v | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> ( E. y e. ~H ( normh ` y ) <_ 1 /\ x = 0 ) ) |
|
| 19 | 17 18 | mpbiran | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = 0 ) <-> x = 0 ) |
| 20 | 10 19 | bitri | |- ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) <-> x = 0 ) |
| 21 | 20 | abbii | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } = { x | x = 0 } |
| 22 | df-sn | |- { 0 } = { x | x = 0 } |
|
| 23 | 21 22 | eqtr4i | |- { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } = { 0 } |
| 24 | 23 | supeq1i | |- sup ( { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( 0hop ` y ) ) ) } , RR* , < ) = sup ( { 0 } , RR* , < ) |
| 25 | xrltso | |- < Or RR* |
|
| 26 | 0xr | |- 0 e. RR* |
|
| 27 | supsn | |- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
|
| 28 | 25 26 27 | mp2an | |- sup ( { 0 } , RR* , < ) = 0 |
| 29 | 3 24 28 | 3eqtri | |- ( normop ` 0hop ) = 0 |