This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmlnop0.1 | |- T e. LinOp |
|
| Assertion | nmlnop0iHIL | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnop0.1 | |- T e. LinOp |
|
| 2 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 3 | eqid | |- ( <. <. +h , .h >. , normh >. normOpOLD <. <. +h , .h >. , normh >. ) = ( <. <. +h , .h >. , normh >. normOpOLD <. <. +h , .h >. , normh >. ) |
|
| 4 | 2 3 | hhnmoi | |- normop = ( <. <. +h , .h >. , normh >. normOpOLD <. <. +h , .h >. , normh >. ) |
| 5 | eqid | |- ( <. <. +h , .h >. , normh >. 0op <. <. +h , .h >. , normh >. ) = ( <. <. +h , .h >. , normh >. 0op <. <. +h , .h >. , normh >. ) |
|
| 6 | 2 5 | hh0oi | |- 0hop = ( <. <. +h , .h >. , normh >. 0op <. <. +h , .h >. , normh >. ) |
| 7 | eqid | |- ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) = ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) |
|
| 8 | 2 7 | hhlnoi | |- LinOp = ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) |
| 9 | 2 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 10 | 4 6 8 9 9 | nmlno0i | |- ( T e. LinOp -> ( ( normop ` T ) = 0 <-> T = 0hop ) ) |
| 11 | 1 10 | ax-mp | |- ( ( normop ` T ) = 0 <-> T = 0hop ) |