This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopsetretHIL | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 2 | 1 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 4 | 1 | hhnm | |- normh = ( normCV ` <. <. +h , .h >. , normh >. ) |
| 5 | 3 4 | nmosetre | |- ( ( <. <. +h , .h >. , normh >. e. NrmCVec /\ T : ~H --> ~H ) -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |
| 6 | 2 5 | mpan | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |