This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm1 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
| 3 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 4 | 3 | biimpar | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
| 5 | 2 4 | rereccld | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 6 | 5 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 7 | simpl | |- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
|
| 8 | norm-iii | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) |
| 10 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 11 | 10 | biimpa | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
| 12 | 1re | |- 1 e. RR |
|
| 13 | 0le1 | |- 0 <_ 1 |
|
| 14 | divge0 | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
|
| 15 | 12 13 14 | mpanl12 | |- ( ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 16 | 2 11 15 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 17 | 5 16 | absidd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 18 | 17 | oveq1d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) ) |
| 19 | 1 | recnd | |- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 20 | 19 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
| 21 | 20 4 | recid2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) = 1 ) |
| 22 | 9 18 21 | 3eqtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |