This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . Verify that G converges pointwise to F , and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
||
| mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
||
| Assertion | mbfi1fseqlem6 | |- ( ph -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 4 | mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
|
| 5 | 1 2 3 4 | mbfi1fseqlem4 | |- ( ph -> G : NN --> dom S.1 ) |
| 6 | 1 2 3 4 | mbfi1fseqlem5 | |- ( ( ph /\ n e. NN ) -> ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
| 8 | simpr | |- ( ( ph /\ x e. RR ) -> x e. RR ) |
|
| 9 | 8 | recnd | |- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 10 | 9 | abscld | |- ( ( ph /\ x e. RR ) -> ( abs ` x ) e. RR ) |
| 11 | 2 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 12 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ( ph /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 14 | 13 | simpld | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 15 | 10 14 | readdcld | |- ( ( ph /\ x e. RR ) -> ( ( abs ` x ) + ( F ` x ) ) e. RR ) |
| 16 | arch | |- ( ( ( abs ` x ) + ( F ` x ) ) e. RR -> E. k e. NN ( ( abs ` x ) + ( F ` x ) ) < k ) |
|
| 17 | 15 16 | syl | |- ( ( ph /\ x e. RR ) -> E. k e. NN ( ( abs ` x ) + ( F ` x ) ) < k ) |
| 18 | eqid | |- ( ZZ>= ` k ) = ( ZZ>= ` k ) |
|
| 19 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 20 | 19 | ad2antrl | |- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> k e. ZZ ) |
| 21 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 22 | 1zzd | |- ( ( ph /\ x e. RR ) -> 1 e. ZZ ) |
|
| 23 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 24 | 23 | a1i | |- ( ( ph /\ x e. RR ) -> ( 1 / 2 ) e. CC ) |
| 25 | halfre | |- ( 1 / 2 ) e. RR |
|
| 26 | halfge0 | |- 0 <_ ( 1 / 2 ) |
|
| 27 | absid | |- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
|
| 28 | 25 26 27 | mp2an | |- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 29 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 30 | 28 29 | eqbrtri | |- ( abs ` ( 1 / 2 ) ) < 1 |
| 31 | 30 | a1i | |- ( ( ph /\ x e. RR ) -> ( abs ` ( 1 / 2 ) ) < 1 ) |
| 32 | 24 31 | expcnv | |- ( ( ph /\ x e. RR ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
| 33 | 14 | recnd | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. CC ) |
| 34 | nnex | |- NN e. _V |
|
| 35 | 34 | mptex | |- ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) e. _V |
| 36 | 35 | a1i | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) e. _V ) |
| 37 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 38 | 37 | adantl | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> j e. NN0 ) |
| 39 | oveq2 | |- ( n = j -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ j ) ) |
|
| 40 | eqid | |- ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
|
| 41 | ovex | |- ( ( 1 / 2 ) ^ j ) e. _V |
|
| 42 | 39 40 41 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
| 43 | 38 42 | syl | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
| 44 | expcl | |- ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
|
| 45 | 23 38 44 | sylancr | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( 1 / 2 ) ^ j ) e. CC ) |
| 46 | 43 45 | eqeltrd | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) e. CC ) |
| 47 | 39 | oveq2d | |- ( n = j -> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
| 48 | eqid | |- ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) = ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) |
|
| 49 | ovex | |- ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) e. _V |
|
| 50 | 47 48 49 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
| 51 | 50 | adantl | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
| 52 | 43 | oveq2d | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` x ) - ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
| 53 | 51 52 | eqtr4d | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` j ) ) ) |
| 54 | 21 22 32 33 36 46 53 | climsubc2 | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( ( F ` x ) - 0 ) ) |
| 55 | 33 | subid1d | |- ( ( ph /\ x e. RR ) -> ( ( F ` x ) - 0 ) = ( F ` x ) ) |
| 56 | 54 55 | breqtrd | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( F ` x ) ) |
| 57 | 56 | adantr | |- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ~~> ( F ` x ) ) |
| 58 | 34 | mptex | |- ( n e. NN |-> ( ( G ` n ) ` x ) ) e. _V |
| 59 | 58 | a1i | |- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) e. _V ) |
| 60 | simprl | |- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> k e. NN ) |
|
| 61 | eluznn | |- ( ( k e. NN /\ j e. ( ZZ>= ` k ) ) -> j e. NN ) |
|
| 62 | 60 61 | sylan | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. NN ) |
| 63 | 62 50 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) = ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) ) |
| 64 | 14 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. RR ) |
| 65 | 62 37 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. NN0 ) |
| 66 | reexpcl | |- ( ( ( 1 / 2 ) e. RR /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. RR ) |
|
| 67 | 25 65 66 | sylancr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( 1 / 2 ) ^ j ) e. RR ) |
| 68 | 64 67 | resubcld | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) e. RR ) |
| 69 | 63 68 | eqeltrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) e. RR ) |
| 70 | fveq2 | |- ( n = j -> ( G ` n ) = ( G ` j ) ) |
|
| 71 | 70 | fveq1d | |- ( n = j -> ( ( G ` n ) ` x ) = ( ( G ` j ) ` x ) ) |
| 72 | eqid | |- ( n e. NN |-> ( ( G ` n ) ` x ) ) = ( n e. NN |-> ( ( G ` n ) ` x ) ) |
|
| 73 | fvex | |- ( ( G ` j ) ` x ) e. _V |
|
| 74 | 71 72 73 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( G ` j ) ` x ) ) |
| 75 | 62 74 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( G ` j ) ` x ) ) |
| 76 | 5 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> G : NN --> dom S.1 ) |
| 77 | 76 62 | ffvelcdmd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) e. dom S.1 ) |
| 78 | i1ff | |- ( ( G ` j ) e. dom S.1 -> ( G ` j ) : RR --> RR ) |
|
| 79 | 77 78 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) : RR --> RR ) |
| 80 | 8 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. RR ) |
| 81 | 79 80 | ffvelcdmd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( G ` j ) ` x ) e. RR ) |
| 82 | 75 81 | eqeltrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) e. RR ) |
| 83 | 33 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. CC ) |
| 84 | 2nn | |- 2 e. NN |
|
| 85 | nnexpcl | |- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
|
| 86 | 84 65 85 | sylancr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. NN ) |
| 87 | 86 | nnred | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. RR ) |
| 88 | 87 | recnd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) e. CC ) |
| 89 | 86 | nnne0d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 2 ^ j ) =/= 0 ) |
| 90 | 83 88 89 | divcan4d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) = ( F ` x ) ) |
| 91 | 90 | eqcomd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) = ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) ) |
| 92 | 2cnd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 2 e. CC ) |
|
| 93 | 2ne0 | |- 2 =/= 0 |
|
| 94 | 93 | a1i | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 2 =/= 0 ) |
| 95 | eluzelz | |- ( j e. ( ZZ>= ` k ) -> j e. ZZ ) |
|
| 96 | 95 | adantl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. ZZ ) |
| 97 | 92 94 96 | exprecd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
| 98 | 91 97 | oveq12d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) - ( 1 / ( 2 ^ j ) ) ) ) |
| 99 | 64 87 | remulcld | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) e. RR ) |
| 100 | 99 | recnd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) e. CC ) |
| 101 | 1cnd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 1 e. CC ) |
|
| 102 | 100 101 88 89 | divsubdird | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) / ( 2 ^ j ) ) - ( 1 / ( 2 ^ j ) ) ) ) |
| 103 | 98 102 | eqtr4d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) = ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) ) |
| 104 | fllep1 | |- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) |
|
| 105 | 99 104 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) |
| 106 | 1red | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 1 e. RR ) |
|
| 107 | reflcl | |- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR ) |
|
| 108 | 99 107 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR ) |
| 109 | 99 106 108 | lesubaddd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( F ` x ) x. ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) + 1 ) ) ) |
| 110 | 105 109 | mpbird | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
| 111 | peano2rem | |- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR ) |
|
| 112 | 99 111 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR ) |
| 113 | 86 | nngt0d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 < ( 2 ^ j ) ) |
| 114 | lediv1 | |- ( ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) e. RR /\ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR /\ ( ( 2 ^ j ) e. RR /\ 0 < ( 2 ^ j ) ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) ) |
|
| 115 | 112 108 87 113 114 | syl112anc | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <-> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) ) |
| 116 | 110 115 | mpbid | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( ( F ` x ) x. ( 2 ^ j ) ) - 1 ) / ( 2 ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 117 | 103 116 | eqbrtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) - ( ( 1 / 2 ) ^ j ) ) <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 118 | 1 2 3 4 | mbfi1fseqlem2 | |- ( j e. NN -> ( G ` j ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ) |
| 119 | 62 118 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( G ` j ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ) |
| 120 | 119 | fveq1d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( G ` j ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) ) |
| 121 | ovex | |- ( j J x ) e. _V |
|
| 122 | vex | |- j e. _V |
|
| 123 | 121 122 | ifex | |- if ( ( j J x ) <_ j , ( j J x ) , j ) e. _V |
| 124 | c0ex | |- 0 e. _V |
|
| 125 | 123 124 | ifex | |- if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) e. _V |
| 126 | eqid | |- ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
|
| 127 | 126 | fvmpt2 | |- ( ( x e. RR /\ if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) e. _V ) -> ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
| 128 | 80 125 127 | sylancl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( x e. RR |-> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) ` x ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
| 129 | 75 120 128 | 3eqtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) ) |
| 130 | 10 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) e. RR ) |
| 131 | 15 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) e. RR ) |
| 132 | 62 | nnred | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> j e. RR ) |
| 133 | 11 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 134 | 133 12 | sylib | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 135 | 134 | simprd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 <_ ( F ` x ) ) |
| 136 | 130 64 | addge01d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 0 <_ ( F ` x ) <-> ( abs ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) ) |
| 137 | 135 136 | mpbid | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) |
| 138 | 60 | adantr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k e. NN ) |
| 139 | 138 | nnred | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k e. RR ) |
| 140 | simplrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) < k ) |
|
| 141 | 131 139 140 | ltled | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) <_ k ) |
| 142 | eluzle | |- ( j e. ( ZZ>= ` k ) -> k <_ j ) |
|
| 143 | 142 | adantl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> k <_ j ) |
| 144 | 131 139 132 141 143 | letrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) + ( F ` x ) ) <_ j ) |
| 145 | 130 131 132 137 144 | letrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( abs ` x ) <_ j ) |
| 146 | 80 132 | absled | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( abs ` x ) <_ j <-> ( -u j <_ x /\ x <_ j ) ) ) |
| 147 | 145 146 | mpbid | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( -u j <_ x /\ x <_ j ) ) |
| 148 | 147 | simpld | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> -u j <_ x ) |
| 149 | 147 | simprd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x <_ j ) |
| 150 | 132 | renegcld | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> -u j e. RR ) |
| 151 | elicc2 | |- ( ( -u j e. RR /\ j e. RR ) -> ( x e. ( -u j [,] j ) <-> ( x e. RR /\ -u j <_ x /\ x <_ j ) ) ) |
|
| 152 | 150 132 151 | syl2anc | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( x e. ( -u j [,] j ) <-> ( x e. RR /\ -u j <_ x /\ x <_ j ) ) ) |
| 153 | 80 148 149 152 | mpbir3and | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. ( -u j [,] j ) ) |
| 154 | 153 | iftrued | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( x e. ( -u j [,] j ) , if ( ( j J x ) <_ j , ( j J x ) , j ) , 0 ) = if ( ( j J x ) <_ j , ( j J x ) , j ) ) |
| 155 | simpr | |- ( ( m = j /\ y = x ) -> y = x ) |
|
| 156 | 155 | fveq2d | |- ( ( m = j /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 157 | simpl | |- ( ( m = j /\ y = x ) -> m = j ) |
|
| 158 | 157 | oveq2d | |- ( ( m = j /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ j ) ) |
| 159 | 156 158 | oveq12d | |- ( ( m = j /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ j ) ) ) |
| 160 | 159 | fveq2d | |- ( ( m = j /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
| 161 | 160 158 | oveq12d | |- ( ( m = j /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 162 | ovex | |- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) e. _V |
|
| 163 | 161 3 162 | ovmpoa | |- ( ( j e. NN /\ x e. RR ) -> ( j J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 164 | 62 80 163 | syl2anc | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( j J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 165 | 108 86 | nndivred | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) e. RR ) |
| 166 | flle | |- ( ( ( F ` x ) x. ( 2 ^ j ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) |
|
| 167 | 99 166 | syl | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) |
| 168 | ledivmul2 | |- ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ j ) e. RR /\ 0 < ( 2 ^ j ) ) ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
|
| 169 | 108 64 87 113 168 | syl112anc | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) <_ ( ( F ` x ) x. ( 2 ^ j ) ) ) ) |
| 170 | 167 169 | mpbird | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ ( F ` x ) ) |
| 171 | 9 | ad2antrr | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> x e. CC ) |
| 172 | 171 | absge0d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> 0 <_ ( abs ` x ) ) |
| 173 | 64 130 | addge02d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( 0 <_ ( abs ` x ) <-> ( F ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) ) |
| 174 | 172 173 | mpbid | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) <_ ( ( abs ` x ) + ( F ` x ) ) ) |
| 175 | 64 131 132 174 144 | letrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( F ` x ) <_ j ) |
| 176 | 165 64 132 170 175 | letrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) <_ j ) |
| 177 | 164 176 | eqbrtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( j J x ) <_ j ) |
| 178 | 177 | iftrued | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( ( j J x ) <_ j , ( j J x ) , j ) = ( j J x ) ) |
| 179 | 178 164 | eqtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> if ( ( j J x ) <_ j , ( j J x ) , j ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 180 | 129 154 179 | 3eqtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ j ) ) ) / ( 2 ^ j ) ) ) |
| 181 | 117 63 180 | 3brtr4d | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( F ` x ) - ( ( 1 / 2 ) ^ n ) ) ) ` j ) <_ ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) ) |
| 182 | 180 170 | eqbrtrd | |- ( ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) /\ j e. ( ZZ>= ` k ) ) -> ( ( n e. NN |-> ( ( G ` n ) ` x ) ) ` j ) <_ ( F ` x ) ) |
| 183 | 18 20 57 59 69 82 181 182 | climsqz | |- ( ( ( ph /\ x e. RR ) /\ ( k e. NN /\ ( ( abs ` x ) + ( F ` x ) ) < k ) ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
| 184 | 17 183 | rexlimddv | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
| 185 | 184 | ralrimiva | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) |
| 186 | 34 | mptex | |- ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) e. _V |
| 187 | 4 186 | eqeltri | |- G e. _V |
| 188 | feq1 | |- ( g = G -> ( g : NN --> dom S.1 <-> G : NN --> dom S.1 ) ) |
|
| 189 | fveq1 | |- ( g = G -> ( g ` n ) = ( G ` n ) ) |
|
| 190 | 189 | breq2d | |- ( g = G -> ( 0p oR <_ ( g ` n ) <-> 0p oR <_ ( G ` n ) ) ) |
| 191 | fveq1 | |- ( g = G -> ( g ` ( n + 1 ) ) = ( G ` ( n + 1 ) ) ) |
|
| 192 | 189 191 | breq12d | |- ( g = G -> ( ( g ` n ) oR <_ ( g ` ( n + 1 ) ) <-> ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) |
| 193 | 190 192 | anbi12d | |- ( g = G -> ( ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) ) |
| 194 | 193 | ralbidv | |- ( g = G -> ( A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) <-> A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) ) ) |
| 195 | 189 | fveq1d | |- ( g = G -> ( ( g ` n ) ` x ) = ( ( G ` n ) ` x ) ) |
| 196 | 195 | mpteq2dv | |- ( g = G -> ( n e. NN |-> ( ( g ` n ) ` x ) ) = ( n e. NN |-> ( ( G ` n ) ` x ) ) ) |
| 197 | 196 | breq1d | |- ( g = G -> ( ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
| 198 | 197 | ralbidv | |- ( g = G -> ( A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) <-> A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
| 199 | 188 194 198 | 3anbi123d | |- ( g = G -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) <-> ( G : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) ) ) |
| 200 | 187 199 | spcev | |- ( ( G : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( G ` n ) /\ ( G ` n ) oR <_ ( G ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( G ` n ) ` x ) ) ~~> ( F ` x ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |
| 201 | 5 7 185 200 | syl3anc | |- ( ph -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( 0p oR <_ ( g ` n ) /\ ( g ` n ) oR <_ ( g ` ( n + 1 ) ) ) /\ A. x e. RR ( n e. NN |-> ( ( g ` n ) ` x ) ) ~~> ( F ` x ) ) ) |