This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| climadd.2 | |- ( ph -> M e. ZZ ) |
||
| climadd.4 | |- ( ph -> F ~~> A ) |
||
| climsqz.5 | |- ( ph -> G e. W ) |
||
| climsqz.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| climsqz.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
||
| climsqz.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
||
| climsqz.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ A ) |
||
| Assertion | climsqz | |- ( ph -> G ~~> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climadd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climadd.4 | |- ( ph -> F ~~> A ) |
|
| 4 | climsqz.5 | |- ( ph -> G e. W ) |
|
| 5 | climsqz.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 6 | climsqz.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
|
| 7 | climsqz.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
|
| 8 | climsqz.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ A ) |
|
| 9 | 2 | adantr | |- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 10 | simpr | |- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
|
| 11 | eqidd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 12 | 3 | adantr | |- ( ( ph /\ x e. RR+ ) -> F ~~> A ) |
| 13 | 1 9 10 11 12 | climi2 | |- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x ) |
| 14 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 15 | 1 2 3 5 | climrecl | |- ( ph -> A e. RR ) |
| 16 | 15 | adantr | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
| 17 | 5 6 16 7 | lesub2dd | |- ( ( ph /\ k e. Z ) -> ( A - ( G ` k ) ) <_ ( A - ( F ` k ) ) ) |
| 18 | 6 16 8 | abssuble0d | |- ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) = ( A - ( G ` k ) ) ) |
| 19 | 5 6 16 7 8 | letrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ A ) |
| 20 | 5 16 19 | abssuble0d | |- ( ( ph /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) = ( A - ( F ` k ) ) ) |
| 21 | 17 18 20 | 3brtr4d | |- ( ( ph /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
| 22 | 21 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
| 23 | 6 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 24 | 15 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> A e. RR ) |
| 25 | 23 24 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. RR ) |
| 26 | 25 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( G ` k ) - A ) e. CC ) |
| 27 | 26 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( G ` k ) - A ) ) e. RR ) |
| 28 | 5 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 29 | 28 24 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. RR ) |
| 30 | 29 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - A ) e. CC ) |
| 31 | 30 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
| 32 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 33 | 32 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> x e. RR ) |
| 34 | lelttr | |- ( ( ( abs ` ( ( G ` k ) - A ) ) e. RR /\ ( abs ` ( ( F ` k ) - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
|
| 35 | 27 31 33 34 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) <_ ( abs ` ( ( F ` k ) - A ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < x ) -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 36 | 22 35 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 37 | 14 36 | sylan2 | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 38 | 37 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x -> ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 39 | 38 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 40 | 39 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - A ) ) < x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 41 | 13 40 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) |
| 42 | 41 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) |
| 43 | eqidd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
|
| 44 | 15 | recnd | |- ( ph -> A e. CC ) |
| 45 | 6 | recnd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 46 | 1 2 4 43 44 45 | clim2c | |- ( ph -> ( G ~~> A <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < x ) ) |
| 47 | 42 46 | mpbird | |- ( ph -> G ~~> A ) |