This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1binom.p | |- P = ( Poly1 ` R ) |
|
| cply1binom.x | |- X = ( var1 ` R ) |
||
| cply1binom.a | |- .+ = ( +g ` P ) |
||
| cply1binom.m | |- .X. = ( .r ` P ) |
||
| cply1binom.t | |- .x. = ( .g ` P ) |
||
| cply1binom.g | |- G = ( mulGrp ` P ) |
||
| cply1binom.e | |- .^ = ( .g ` G ) |
||
| lply1binomsc.k | |- K = ( Base ` R ) |
||
| lply1binomsc.s | |- S = ( algSc ` P ) |
||
| lply1binomsc.h | |- H = ( mulGrp ` R ) |
||
| lply1binomsc.e | |- E = ( .g ` H ) |
||
| Assertion | lply1binomsc | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1binom.p | |- P = ( Poly1 ` R ) |
|
| 2 | cply1binom.x | |- X = ( var1 ` R ) |
|
| 3 | cply1binom.a | |- .+ = ( +g ` P ) |
|
| 4 | cply1binom.m | |- .X. = ( .r ` P ) |
|
| 5 | cply1binom.t | |- .x. = ( .g ` P ) |
|
| 6 | cply1binom.g | |- G = ( mulGrp ` P ) |
|
| 7 | cply1binom.e | |- .^ = ( .g ` G ) |
|
| 8 | lply1binomsc.k | |- K = ( Base ` R ) |
|
| 9 | lply1binomsc.s | |- S = ( algSc ` P ) |
|
| 10 | lply1binomsc.h | |- H = ( mulGrp ` R ) |
|
| 11 | lply1binomsc.e | |- E = ( .g ` H ) |
|
| 12 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 13 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 14 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 15 | 13 14 | syl | |- ( R e. CRing -> P e. Ring ) |
| 16 | 15 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. Ring ) |
| 17 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 18 | 13 17 | syl | |- ( R e. CRing -> P e. LMod ) |
| 19 | 18 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. LMod ) |
| 20 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 21 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 22 | 9 12 16 19 20 21 | asclf | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) |
| 23 | 1 | ply1sca | |- ( R e. CRing -> R = ( Scalar ` P ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> R = ( Scalar ` P ) ) |
| 25 | 24 | fveq2d | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 26 | 8 25 | eqtrid | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> K = ( Base ` ( Scalar ` P ) ) ) |
| 27 | 26 | feq2d | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S : K --> ( Base ` P ) <-> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) ) |
| 28 | 22 27 | mpbird | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : K --> ( Base ` P ) ) |
| 29 | simp3 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. K ) |
|
| 30 | 28 29 | ffvelcdmd | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S ` A ) e. ( Base ` P ) ) |
| 31 | 1 2 3 4 5 6 7 21 | lply1binom | |- ( ( R e. CRing /\ N e. NN0 /\ ( S ` A ) e. ( Base ` P ) ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 32 | 30 31 | syld3an3 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 33 | 1 | ply1assa | |- ( R e. CRing -> P e. AssAlg ) |
| 34 | 33 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. AssAlg ) |
| 35 | 34 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> P e. AssAlg ) |
| 36 | fznn0sub | |- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
|
| 37 | 36 | adantl | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 38 | 23 | fveq2d | |- ( R e. CRing -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 39 | 8 38 | eqtrid | |- ( R e. CRing -> K = ( Base ` ( Scalar ` P ) ) ) |
| 40 | 39 | eleq2d | |- ( R e. CRing -> ( A e. K <-> A e. ( Base ` ( Scalar ` P ) ) ) ) |
| 41 | 40 | biimpa | |- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 42 | 41 | 3adant2 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 43 | 42 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 44 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 45 | 21 44 | ringidcl | |- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 46 | 15 45 | syl | |- ( R e. CRing -> ( 1r ` P ) e. ( Base ` P ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( 1r ` P ) e. ( Base ` P ) ) |
| 48 | 47 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( 1r ` P ) e. ( Base ` P ) ) |
| 49 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 50 | eqid | |- ( mulGrp ` ( Scalar ` P ) ) = ( mulGrp ` ( Scalar ` P ) ) |
|
| 51 | eqid | |- ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) |
|
| 52 | 21 12 20 49 50 51 6 7 | assamulgscm | |- ( ( P e. AssAlg /\ ( ( N - k ) e. NN0 /\ A e. ( Base ` ( Scalar ` P ) ) /\ ( 1r ` P ) e. ( Base ` P ) ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
| 53 | 35 37 43 48 52 | syl13anc | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
| 54 | 23 | fveq2d | |- ( R e. CRing -> ( mulGrp ` R ) = ( mulGrp ` ( Scalar ` P ) ) ) |
| 55 | 10 54 | eqtrid | |- ( R e. CRing -> H = ( mulGrp ` ( Scalar ` P ) ) ) |
| 56 | 55 | fveq2d | |- ( R e. CRing -> ( .g ` H ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 57 | 11 56 | eqtrid | |- ( R e. CRing -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 58 | 57 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 59 | 58 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 60 | 59 | eqcomd | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = E ) |
| 61 | 60 | oveqd | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) = ( ( N - k ) E A ) ) |
| 62 | 6 | ringmgp | |- ( P e. Ring -> G e. Mnd ) |
| 63 | 15 62 | syl | |- ( R e. CRing -> G e. Mnd ) |
| 64 | 63 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> G e. Mnd ) |
| 65 | 6 21 | mgpbas | |- ( Base ` P ) = ( Base ` G ) |
| 66 | 6 44 | ringidval | |- ( 1r ` P ) = ( 0g ` G ) |
| 67 | 65 7 66 | mulgnn0z | |- ( ( G e. Mnd /\ ( N - k ) e. NN0 ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
| 68 | 64 36 67 | syl2an | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
| 69 | 61 68 | oveq12d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 70 | 53 69 | eqtrd | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 71 | 9 12 20 49 44 | asclval | |- ( A e. ( Base ` ( Scalar ` P ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
| 72 | 43 71 | syl | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
| 73 | 72 | oveq2d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) ) |
| 74 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 75 | 10 | ringmgp | |- ( R e. Ring -> H e. Mnd ) |
| 76 | 13 75 | syl | |- ( R e. CRing -> H e. Mnd ) |
| 77 | 76 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> H e. Mnd ) |
| 78 | 77 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> H e. Mnd ) |
| 79 | simpr | |- ( ( R e. CRing /\ A e. K ) -> A e. K ) |
|
| 80 | 10 8 | mgpbas | |- K = ( Base ` H ) |
| 81 | 79 80 | eleqtrdi | |- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` H ) ) |
| 82 | 81 | 3adant2 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` H ) ) |
| 83 | 82 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` H ) ) |
| 84 | 74 11 78 37 83 | mulgnn0cld | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` H ) ) |
| 85 | 24 | adantr | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> R = ( Scalar ` P ) ) |
| 86 | 85 | eqcomd | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Scalar ` P ) = R ) |
| 87 | 86 | fveq2d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 88 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 89 | 10 88 | mgpbas | |- ( Base ` R ) = ( Base ` H ) |
| 90 | 87 89 | eqtrdi | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` H ) ) |
| 91 | 84 90 | eleqtrrd | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) ) |
| 92 | 9 12 20 49 44 | asclval | |- ( ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 93 | 91 92 | syl | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 94 | 70 73 93 | 3eqtr4d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( S ` ( ( N - k ) E A ) ) ) |
| 95 | 94 | oveq1d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) = ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) |
| 96 | 95 | oveq2d | |- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) = ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) |
| 97 | 96 | mpteq2dva | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) |
| 98 | 97 | oveq2d | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 99 | 32 98 | eqtrd | |- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |