This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1binom.p | |- P = ( Poly1 ` R ) |
|
| cply1binom.x | |- X = ( var1 ` R ) |
||
| cply1binom.a | |- .+ = ( +g ` P ) |
||
| cply1binom.m | |- .X. = ( .r ` P ) |
||
| cply1binom.t | |- .x. = ( .g ` P ) |
||
| cply1binom.g | |- G = ( mulGrp ` P ) |
||
| cply1binom.e | |- .^ = ( .g ` G ) |
||
| cply1binom.b | |- B = ( Base ` P ) |
||
| Assertion | lply1binom | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( X .+ A ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1binom.p | |- P = ( Poly1 ` R ) |
|
| 2 | cply1binom.x | |- X = ( var1 ` R ) |
|
| 3 | cply1binom.a | |- .+ = ( +g ` P ) |
|
| 4 | cply1binom.m | |- .X. = ( .r ` P ) |
|
| 5 | cply1binom.t | |- .x. = ( .g ` P ) |
|
| 6 | cply1binom.g | |- G = ( mulGrp ` P ) |
|
| 7 | cply1binom.e | |- .^ = ( .g ` G ) |
|
| 8 | cply1binom.b | |- B = ( Base ` P ) |
|
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 11 | ringcmn | |- ( P e. Ring -> P e. CMnd ) |
|
| 12 | 9 10 11 | 3syl | |- ( R e. CRing -> P e. CMnd ) |
| 13 | 12 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> P e. CMnd ) |
| 14 | 2 1 8 | vr1cl | |- ( R e. Ring -> X e. B ) |
| 15 | 9 14 | syl | |- ( R e. CRing -> X e. B ) |
| 16 | 15 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> X e. B ) |
| 17 | simp3 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> A e. B ) |
|
| 18 | 8 3 | cmncom | |- ( ( P e. CMnd /\ X e. B /\ A e. B ) -> ( X .+ A ) = ( A .+ X ) ) |
| 19 | 13 16 17 18 | syl3anc | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( X .+ A ) = ( A .+ X ) ) |
| 20 | 19 | oveq2d | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( X .+ A ) ) = ( N .^ ( A .+ X ) ) ) |
| 21 | 1 | ply1crng | |- ( R e. CRing -> P e. CRing ) |
| 22 | 21 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> P e. CRing ) |
| 23 | simp2 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> N e. NN0 ) |
|
| 24 | 8 | eleq2i | |- ( A e. B <-> A e. ( Base ` P ) ) |
| 25 | 24 | biimpi | |- ( A e. B -> A e. ( Base ` P ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> A e. ( Base ` P ) ) |
| 27 | 15 8 | eleqtrdi | |- ( R e. CRing -> X e. ( Base ` P ) ) |
| 28 | 27 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> X e. ( Base ` P ) ) |
| 29 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 30 | 29 4 5 3 6 7 | crngbinom | |- ( ( ( P e. CRing /\ N e. NN0 ) /\ ( A e. ( Base ` P ) /\ X e. ( Base ` P ) ) ) -> ( N .^ ( A .+ X ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |
| 31 | 22 23 26 28 30 | syl22anc | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( A .+ X ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |
| 32 | 20 31 | eqtrd | |- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( X .+ A ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |