This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1binom.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| cply1binom.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| cply1binom.a | ⊢ + = ( +g ‘ 𝑃 ) | ||
| cply1binom.m | ⊢ × = ( .r ‘ 𝑃 ) | ||
| cply1binom.t | ⊢ · = ( .g ‘ 𝑃 ) | ||
| cply1binom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
| cply1binom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| lply1binomsc.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| lply1binomsc.s | ⊢ 𝑆 = ( algSc ‘ 𝑃 ) | ||
| lply1binomsc.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) | ||
| lply1binomsc.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | ||
| Assertion | lply1binomsc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1binom.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | cply1binom.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | cply1binom.a | ⊢ + = ( +g ‘ 𝑃 ) | |
| 4 | cply1binom.m | ⊢ × = ( .r ‘ 𝑃 ) | |
| 5 | cply1binom.t | ⊢ · = ( .g ‘ 𝑃 ) | |
| 6 | cply1binom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
| 7 | cply1binom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | lply1binomsc.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 9 | lply1binomsc.s | ⊢ 𝑆 = ( algSc ‘ 𝑃 ) | |
| 10 | lply1binomsc.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) | |
| 11 | lply1binomsc.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 13 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 14 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 | 13 14 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ Ring ) |
| 17 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 18 | 13 17 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ LMod ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ LMod ) |
| 20 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 22 | 9 12 16 19 20 21 | asclf | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
| 23 | 1 | ply1sca | ⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 26 | 8 25 | eqtrid | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 27 | 26 | feq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑆 : 𝐾 ⟶ ( Base ‘ 𝑃 ) ↔ 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) ) |
| 28 | 22 27 | mpbird | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑆 : 𝐾 ⟶ ( Base ‘ 𝑃 ) ) |
| 29 | simp3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 30 | 28 29 | ffvelcdmd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑆 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 31 | 1 2 3 4 5 6 7 21 | lply1binom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 32 | 30 31 | syld3an3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 33 | 1 | ply1assa | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ AssAlg ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ AssAlg ) |
| 36 | fznn0sub | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) | |
| 37 | 36 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 38 | 23 | fveq2d | ⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 39 | 8 38 | eqtrid | ⊢ ( 𝑅 ∈ CRing → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 40 | 39 | eleq2d | ⊢ ( 𝑅 ∈ CRing → ( 𝐴 ∈ 𝐾 ↔ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 41 | 40 | biimpa | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 42 | 41 | 3adant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 44 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 45 | 21 44 | ringidcl | ⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 46 | 15 45 | syl | ⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 49 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 50 | eqid | ⊢ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) | |
| 51 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) | |
| 52 | 21 12 20 49 50 51 6 7 | assamulgscm | ⊢ ( ( 𝑃 ∈ AssAlg ∧ ( ( 𝑁 − 𝑘 ) ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) ) |
| 53 | 35 37 43 48 52 | syl13anc | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) ) |
| 54 | 23 | fveq2d | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 55 | 10 54 | eqtrid | ⊢ ( 𝑅 ∈ CRing → 𝐻 = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 56 | 55 | fveq2d | ⊢ ( 𝑅 ∈ CRing → ( .g ‘ 𝐻 ) = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 57 | 11 56 | eqtrid | ⊢ ( 𝑅 ∈ CRing → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 58 | 57 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 60 | 59 | eqcomd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) = 𝐸 ) |
| 61 | 60 | oveqd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) = ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) |
| 62 | 6 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 63 | 15 62 | syl | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 64 | 63 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐺 ∈ Mnd ) |
| 65 | 6 21 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 66 | 6 44 | ringidval | ⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
| 67 | 65 7 66 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 − 𝑘 ) ∈ ℕ0 ) → ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑃 ) ) |
| 68 | 64 36 67 | syl2an | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑃 ) ) |
| 69 | 61 68 | oveq12d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 70 | 53 69 | eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 71 | 9 12 20 49 44 | asclval | ⊢ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 72 | 43 71 | syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 73 | 72 | oveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) = ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) ) |
| 74 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 75 | 10 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝐻 ∈ Mnd ) |
| 76 | 13 75 | syl | ⊢ ( 𝑅 ∈ CRing → 𝐻 ∈ Mnd ) |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐻 ∈ Mnd ) |
| 78 | 77 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐻 ∈ Mnd ) |
| 79 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 80 | 10 8 | mgpbas | ⊢ 𝐾 = ( Base ‘ 𝐻 ) |
| 81 | 79 80 | eleqtrdi | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
| 82 | 81 | 3adant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
| 84 | 74 11 78 37 83 | mulgnn0cld | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
| 85 | 24 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 86 | 85 | eqcomd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 87 | 86 | fveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 88 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 89 | 10 88 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐻 ) |
| 90 | 87 89 | eqtrdi | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
| 91 | 84 90 | eleqtrrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 92 | 9 12 20 49 44 | asclval | ⊢ ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 93 | 91 92 | syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 94 | 70 73 93 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) ) |
| 95 | 94 | oveq1d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) |
| 96 | 95 | oveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 97 | 96 | mpteq2dva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 98 | 97 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 99 | 32 98 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |