This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of a scalar multiplication in an associative algebra: ( a .x. X ) ^ N = ( a ^ N ) .X. ( X ^ N ) . (Contributed by AV, 26-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assamulgscm.v | |- V = ( Base ` W ) |
|
| assamulgscm.f | |- F = ( Scalar ` W ) |
||
| assamulgscm.b | |- B = ( Base ` F ) |
||
| assamulgscm.s | |- .x. = ( .s ` W ) |
||
| assamulgscm.g | |- G = ( mulGrp ` F ) |
||
| assamulgscm.p | |- .^ = ( .g ` G ) |
||
| assamulgscm.h | |- H = ( mulGrp ` W ) |
||
| assamulgscm.e | |- E = ( .g ` H ) |
||
| Assertion | assamulgscm | |- ( ( W e. AssAlg /\ ( N e. NN0 /\ A e. B /\ X e. V ) ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assamulgscm.v | |- V = ( Base ` W ) |
|
| 2 | assamulgscm.f | |- F = ( Scalar ` W ) |
|
| 3 | assamulgscm.b | |- B = ( Base ` F ) |
|
| 4 | assamulgscm.s | |- .x. = ( .s ` W ) |
|
| 5 | assamulgscm.g | |- G = ( mulGrp ` F ) |
|
| 6 | assamulgscm.p | |- .^ = ( .g ` G ) |
|
| 7 | assamulgscm.h | |- H = ( mulGrp ` W ) |
|
| 8 | assamulgscm.e | |- E = ( .g ` H ) |
|
| 9 | oveq1 | |- ( x = 0 -> ( x E ( A .x. X ) ) = ( 0 E ( A .x. X ) ) ) |
|
| 10 | oveq1 | |- ( x = 0 -> ( x .^ A ) = ( 0 .^ A ) ) |
|
| 11 | oveq1 | |- ( x = 0 -> ( x E X ) = ( 0 E X ) ) |
|
| 12 | 10 11 | oveq12d | |- ( x = 0 -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |
| 13 | 9 12 | eqeq12d | |- ( x = 0 -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) ) |
| 14 | 13 | imbi2d | |- ( x = 0 -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) ) ) |
| 15 | oveq1 | |- ( x = y -> ( x E ( A .x. X ) ) = ( y E ( A .x. X ) ) ) |
|
| 16 | oveq1 | |- ( x = y -> ( x .^ A ) = ( y .^ A ) ) |
|
| 17 | oveq1 | |- ( x = y -> ( x E X ) = ( y E X ) ) |
|
| 18 | 16 17 | oveq12d | |- ( x = y -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) |
| 19 | 15 18 | eqeq12d | |- ( x = y -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = y -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) ) ) |
| 21 | oveq1 | |- ( x = ( y + 1 ) -> ( x E ( A .x. X ) ) = ( ( y + 1 ) E ( A .x. X ) ) ) |
|
| 22 | oveq1 | |- ( x = ( y + 1 ) -> ( x .^ A ) = ( ( y + 1 ) .^ A ) ) |
|
| 23 | oveq1 | |- ( x = ( y + 1 ) -> ( x E X ) = ( ( y + 1 ) E X ) ) |
|
| 24 | 22 23 | oveq12d | |- ( x = ( y + 1 ) -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) |
| 25 | 21 24 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) |
| 26 | 25 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 27 | oveq1 | |- ( x = N -> ( x E ( A .x. X ) ) = ( N E ( A .x. X ) ) ) |
|
| 28 | oveq1 | |- ( x = N -> ( x .^ A ) = ( N .^ A ) ) |
|
| 29 | oveq1 | |- ( x = N -> ( x E X ) = ( N E X ) ) |
|
| 30 | 28 29 | oveq12d | |- ( x = N -> ( ( x .^ A ) .x. ( x E X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) |
| 31 | 27 30 | eqeq12d | |- ( x = N -> ( ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) <-> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = N -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( x E ( A .x. X ) ) = ( ( x .^ A ) .x. ( x E X ) ) ) <-> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) ) |
| 33 | 1 2 3 4 5 6 7 8 | assamulgscmlem1 | |- ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( 0 E ( A .x. X ) ) = ( ( 0 .^ A ) .x. ( 0 E X ) ) ) |
| 34 | 1 2 3 4 5 6 7 8 | assamulgscmlem2 | |- ( y e. NN0 -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 35 | 34 | a2d | |- ( y e. NN0 -> ( ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( y E ( A .x. X ) ) = ( ( y .^ A ) .x. ( y E X ) ) ) -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( ( y + 1 ) E ( A .x. X ) ) = ( ( ( y + 1 ) .^ A ) .x. ( ( y + 1 ) E X ) ) ) ) ) |
| 36 | 14 20 26 32 33 35 | nn0ind | |- ( N e. NN0 -> ( ( ( A e. B /\ X e. V ) /\ W e. AssAlg ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 37 | 36 | exp4c | |- ( N e. NN0 -> ( A e. B -> ( X e. V -> ( W e. AssAlg -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) ) ) |
| 38 | 37 | 3imp | |- ( ( N e. NN0 /\ A e. B /\ X e. V ) -> ( W e. AssAlg -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) ) |
| 39 | 38 | impcom | |- ( ( W e. AssAlg /\ ( N e. NN0 /\ A e. B /\ X e. V ) ) -> ( N E ( A .x. X ) ) = ( ( N .^ A ) .x. ( N E X ) ) ) |