This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fermat's little theorem for polynomials in a commutative ring F of characteristic P prime: we have the polynomial equation ( X + A ) ^ P = ( ( X ^ P ) + A ) . (Contributed by Thierry Arnoux, 9-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1fermltlchr.w | |- W = ( Poly1 ` F ) |
|
| ply1fermltlchr.x | |- X = ( var1 ` F ) |
||
| ply1fermltlchr.l | |- .+ = ( +g ` W ) |
||
| ply1fermltlchr.n | |- N = ( mulGrp ` W ) |
||
| ply1fermltlchr.t | |- .^ = ( .g ` N ) |
||
| ply1fermltlchr.c | |- C = ( algSc ` W ) |
||
| ply1fermltlchr.a | |- A = ( C ` ( ( ZRHom ` F ) ` E ) ) |
||
| ply1fermltlchr.p | |- P = ( chr ` F ) |
||
| ply1fermltlchr.f | |- ( ph -> F e. CRing ) |
||
| ply1fermltlchr.1 | |- ( ph -> P e. Prime ) |
||
| ply1fermltlchr.2 | |- ( ph -> E e. ZZ ) |
||
| Assertion | ply1fermltlchr | |- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1fermltlchr.w | |- W = ( Poly1 ` F ) |
|
| 2 | ply1fermltlchr.x | |- X = ( var1 ` F ) |
|
| 3 | ply1fermltlchr.l | |- .+ = ( +g ` W ) |
|
| 4 | ply1fermltlchr.n | |- N = ( mulGrp ` W ) |
|
| 5 | ply1fermltlchr.t | |- .^ = ( .g ` N ) |
|
| 6 | ply1fermltlchr.c | |- C = ( algSc ` W ) |
|
| 7 | ply1fermltlchr.a | |- A = ( C ` ( ( ZRHom ` F ) ` E ) ) |
|
| 8 | ply1fermltlchr.p | |- P = ( chr ` F ) |
|
| 9 | ply1fermltlchr.f | |- ( ph -> F e. CRing ) |
|
| 10 | ply1fermltlchr.1 | |- ( ph -> P e. Prime ) |
|
| 11 | ply1fermltlchr.2 | |- ( ph -> E e. ZZ ) |
|
| 12 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 13 | 4 | fveq2i | |- ( .g ` N ) = ( .g ` ( mulGrp ` W ) ) |
| 14 | 5 13 | eqtri | |- .^ = ( .g ` ( mulGrp ` W ) ) |
| 15 | eqid | |- ( chr ` W ) = ( chr ` W ) |
|
| 16 | 1 | ply1crng | |- ( F e. CRing -> W e. CRing ) |
| 17 | 9 16 | syl | |- ( ph -> W e. CRing ) |
| 18 | 1 | ply1chr | |- ( F e. CRing -> ( chr ` W ) = ( chr ` F ) ) |
| 19 | 9 18 | syl | |- ( ph -> ( chr ` W ) = ( chr ` F ) ) |
| 20 | 19 8 | eqtr4di | |- ( ph -> ( chr ` W ) = P ) |
| 21 | 20 10 | eqeltrd | |- ( ph -> ( chr ` W ) e. Prime ) |
| 22 | 9 | crngringd | |- ( ph -> F e. Ring ) |
| 23 | 2 1 12 | vr1cl | |- ( F e. Ring -> X e. ( Base ` W ) ) |
| 24 | 22 23 | syl | |- ( ph -> X e. ( Base ` W ) ) |
| 25 | eqid | |- ( ZRHom ` F ) = ( ZRHom ` F ) |
|
| 26 | 25 | zrhrhm | |- ( F e. Ring -> ( ZRHom ` F ) e. ( ZZring RingHom F ) ) |
| 27 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 28 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 29 | 27 28 | rhmf | |- ( ( ZRHom ` F ) e. ( ZZring RingHom F ) -> ( ZRHom ` F ) : ZZ --> ( Base ` F ) ) |
| 30 | 22 26 29 | 3syl | |- ( ph -> ( ZRHom ` F ) : ZZ --> ( Base ` F ) ) |
| 31 | 30 11 | ffvelcdmd | |- ( ph -> ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) |
| 32 | 1 6 28 12 | ply1sclcl | |- ( ( F e. Ring /\ ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) -> ( C ` ( ( ZRHom ` F ) ` E ) ) e. ( Base ` W ) ) |
| 33 | 22 31 32 | syl2anc | |- ( ph -> ( C ` ( ( ZRHom ` F ) ` E ) ) e. ( Base ` W ) ) |
| 34 | 7 33 | eqeltrid | |- ( ph -> A e. ( Base ` W ) ) |
| 35 | 12 3 14 15 17 21 24 34 | freshmansdream | |- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) ) |
| 36 | 20 | oveq1d | |- ( ph -> ( ( chr ` W ) .^ ( X .+ A ) ) = ( P .^ ( X .+ A ) ) ) |
| 37 | 20 | oveq1d | |- ( ph -> ( ( chr ` W ) .^ X ) = ( P .^ X ) ) |
| 38 | 20 | oveq1d | |- ( ph -> ( ( chr ` W ) .^ A ) = ( P .^ A ) ) |
| 39 | 1 | ply1assa | |- ( F e. CRing -> W e. AssAlg ) |
| 40 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 41 | 6 40 | asclrhm | |- ( W e. AssAlg -> C e. ( ( Scalar ` W ) RingHom W ) ) |
| 42 | 9 39 41 | 3syl | |- ( ph -> C e. ( ( Scalar ` W ) RingHom W ) ) |
| 43 | 9 | crnggrpd | |- ( ph -> F e. Grp ) |
| 44 | 1 | ply1sca | |- ( F e. Grp -> F = ( Scalar ` W ) ) |
| 45 | 43 44 | syl | |- ( ph -> F = ( Scalar ` W ) ) |
| 46 | 45 | oveq1d | |- ( ph -> ( F RingHom W ) = ( ( Scalar ` W ) RingHom W ) ) |
| 47 | 42 46 | eleqtrrd | |- ( ph -> C e. ( F RingHom W ) ) |
| 48 | eqid | |- ( mulGrp ` F ) = ( mulGrp ` F ) |
|
| 49 | 48 4 | rhmmhm | |- ( C e. ( F RingHom W ) -> C e. ( ( mulGrp ` F ) MndHom N ) ) |
| 50 | 47 49 | syl | |- ( ph -> C e. ( ( mulGrp ` F ) MndHom N ) ) |
| 51 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 52 | nnnn0 | |- ( P e. NN -> P e. NN0 ) |
|
| 53 | 10 51 52 | 3syl | |- ( ph -> P e. NN0 ) |
| 54 | 48 28 | mgpbas | |- ( Base ` F ) = ( Base ` ( mulGrp ` F ) ) |
| 55 | eqid | |- ( .g ` ( mulGrp ` F ) ) = ( .g ` ( mulGrp ` F ) ) |
|
| 56 | 54 55 5 | mhmmulg | |- ( ( C e. ( ( mulGrp ` F ) MndHom N ) /\ P e. NN0 /\ ( ( ZRHom ` F ) ` E ) e. ( Base ` F ) ) -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
| 57 | 50 53 31 56 | syl3anc | |- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
| 58 | 7 | a1i | |- ( ph -> A = ( C ` ( ( ZRHom ` F ) ` E ) ) ) |
| 59 | 58 | oveq2d | |- ( ph -> ( P .^ A ) = ( P .^ ( C ` ( ( ZRHom ` F ) ` E ) ) ) ) |
| 60 | 57 59 | eqtr4d | |- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( P .^ A ) ) |
| 61 | eqid | |- ( ( ZRHom ` F ) ` E ) = ( ( ZRHom ` F ) ` E ) |
|
| 62 | 8 28 55 61 10 11 9 | fermltlchr | |- ( ph -> ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) = ( ( ZRHom ` F ) ` E ) ) |
| 63 | 62 | fveq2d | |- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = ( C ` ( ( ZRHom ` F ) ` E ) ) ) |
| 64 | 63 7 | eqtr4di | |- ( ph -> ( C ` ( P ( .g ` ( mulGrp ` F ) ) ( ( ZRHom ` F ) ` E ) ) ) = A ) |
| 65 | 38 60 64 | 3eqtr2d | |- ( ph -> ( ( chr ` W ) .^ A ) = A ) |
| 66 | 37 65 | oveq12d | |- ( ph -> ( ( ( chr ` W ) .^ X ) .+ ( ( chr ` W ) .^ A ) ) = ( ( P .^ X ) .+ A ) ) |
| 67 | 35 36 66 | 3eqtr3d | |- ( ph -> ( P .^ ( X .+ A ) ) = ( ( P .^ X ) .+ A ) ) |