This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0z.b | |- B = ( Base ` G ) |
|
| mulgnn0z.t | |- .x. = ( .g ` G ) |
||
| mulgnn0z.o | |- .0. = ( 0g ` G ) |
||
| Assertion | mulgnn0z | |- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0z.b | |- B = ( Base ` G ) |
|
| 2 | mulgnn0z.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnn0z.o | |- .0. = ( 0g ` G ) |
|
| 4 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 5 | id | |- ( N e. NN -> N e. NN ) |
|
| 6 | 1 3 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) |
|
| 9 | 1 7 2 8 | mulgnn | |- ( ( N e. NN /\ .0. e. B ) -> ( N .x. .0. ) = ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) ) |
| 10 | 5 6 9 | syl2anr | |- ( ( G e. Mnd /\ N e. NN ) -> ( N .x. .0. ) = ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) ) |
| 11 | 1 7 3 | mndlid | |- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 12 | 6 11 | mpdan | |- ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 13 | 12 | adantr | |- ( ( G e. Mnd /\ N e. NN ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 14 | simpr | |- ( ( G e. Mnd /\ N e. NN ) -> N e. NN ) |
|
| 15 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 16 | 14 15 | eleqtrdi | |- ( ( G e. Mnd /\ N e. NN ) -> N e. ( ZZ>= ` 1 ) ) |
| 17 | 6 | adantr | |- ( ( G e. Mnd /\ N e. NN ) -> .0. e. B ) |
| 18 | elfznn | |- ( x e. ( 1 ... N ) -> x e. NN ) |
|
| 19 | fvconst2g | |- ( ( .0. e. B /\ x e. NN ) -> ( ( NN X. { .0. } ) ` x ) = .0. ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ( G e. Mnd /\ N e. NN ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { .0. } ) ` x ) = .0. ) |
| 21 | 13 16 20 | seqid3 | |- ( ( G e. Mnd /\ N e. NN ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) = .0. ) |
| 22 | 10 21 | eqtrd | |- ( ( G e. Mnd /\ N e. NN ) -> ( N .x. .0. ) = .0. ) |
| 23 | oveq1 | |- ( N = 0 -> ( N .x. .0. ) = ( 0 .x. .0. ) ) |
|
| 24 | 1 3 2 | mulg0 | |- ( .0. e. B -> ( 0 .x. .0. ) = .0. ) |
| 25 | 6 24 | syl | |- ( G e. Mnd -> ( 0 .x. .0. ) = .0. ) |
| 26 | 23 25 | sylan9eqr | |- ( ( G e. Mnd /\ N = 0 ) -> ( N .x. .0. ) = .0. ) |
| 27 | 22 26 | jaodan | |- ( ( G e. Mnd /\ ( N e. NN \/ N = 0 ) ) -> ( N .x. .0. ) = .0. ) |
| 28 | 4 27 | sylan2b | |- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) |