This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The log x / x function is strictly decreasing on the reals greater than _e . (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdivlt | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B <-> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logdivlti | |- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |
|
| 2 | 1 | ex | |- ( ( A e. RR /\ B e. RR /\ _e <_ A ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
| 3 | 2 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ _e <_ A ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
| 4 | 3 | an32s | |- ( ( ( A e. RR /\ _e <_ A ) /\ B e. RR ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
| 5 | 4 | adantrr | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
| 6 | fveq2 | |- ( A = B -> ( log ` A ) = ( log ` B ) ) |
|
| 7 | id | |- ( A = B -> A = B ) |
|
| 8 | 6 7 | oveq12d | |- ( A = B -> ( ( log ` A ) / A ) = ( ( log ` B ) / B ) ) |
| 9 | 8 | eqcomd | |- ( A = B -> ( ( log ` B ) / B ) = ( ( log ` A ) / A ) ) |
| 10 | 9 | a1i | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A = B -> ( ( log ` B ) / B ) = ( ( log ` A ) / A ) ) ) |
| 11 | logdivlti | |- ( ( ( B e. RR /\ A e. RR /\ _e <_ B ) /\ B < A ) -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) |
|
| 12 | 11 | ex | |- ( ( B e. RR /\ A e. RR /\ _e <_ B ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 13 | 12 | 3expa | |- ( ( ( B e. RR /\ A e. RR ) /\ _e <_ B ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 14 | 13 | an32s | |- ( ( ( B e. RR /\ _e <_ B ) /\ A e. RR ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 15 | 14 | adantrr | |- ( ( ( B e. RR /\ _e <_ B ) /\ ( A e. RR /\ _e <_ A ) ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 16 | 15 | ancoms | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
| 17 | 10 16 | orim12d | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( A = B \/ B < A ) -> ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
| 18 | 17 | con3d | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) -> -. ( A = B \/ B < A ) ) ) |
| 19 | simpl | |- ( ( B e. RR /\ _e <_ B ) -> B e. RR ) |
|
| 20 | epos | |- 0 < _e |
|
| 21 | 0re | |- 0 e. RR |
|
| 22 | ere | |- _e e. RR |
|
| 23 | ltletr | |- ( ( 0 e. RR /\ _e e. RR /\ B e. RR ) -> ( ( 0 < _e /\ _e <_ B ) -> 0 < B ) ) |
|
| 24 | 21 22 23 | mp3an12 | |- ( B e. RR -> ( ( 0 < _e /\ _e <_ B ) -> 0 < B ) ) |
| 25 | 20 24 | mpani | |- ( B e. RR -> ( _e <_ B -> 0 < B ) ) |
| 26 | 25 | imp | |- ( ( B e. RR /\ _e <_ B ) -> 0 < B ) |
| 27 | 19 26 | elrpd | |- ( ( B e. RR /\ _e <_ B ) -> B e. RR+ ) |
| 28 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 29 | rerpdivcl | |- ( ( ( log ` B ) e. RR /\ B e. RR+ ) -> ( ( log ` B ) / B ) e. RR ) |
|
| 30 | 28 29 | mpancom | |- ( B e. RR+ -> ( ( log ` B ) / B ) e. RR ) |
| 31 | 27 30 | syl | |- ( ( B e. RR /\ _e <_ B ) -> ( ( log ` B ) / B ) e. RR ) |
| 32 | simpl | |- ( ( A e. RR /\ _e <_ A ) -> A e. RR ) |
|
| 33 | ltletr | |- ( ( 0 e. RR /\ _e e. RR /\ A e. RR ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
|
| 34 | 21 22 33 | mp3an12 | |- ( A e. RR -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
| 35 | 20 34 | mpani | |- ( A e. RR -> ( _e <_ A -> 0 < A ) ) |
| 36 | 35 | imp | |- ( ( A e. RR /\ _e <_ A ) -> 0 < A ) |
| 37 | 32 36 | elrpd | |- ( ( A e. RR /\ _e <_ A ) -> A e. RR+ ) |
| 38 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 39 | rerpdivcl | |- ( ( ( log ` A ) e. RR /\ A e. RR+ ) -> ( ( log ` A ) / A ) e. RR ) |
|
| 40 | 38 39 | mpancom | |- ( A e. RR+ -> ( ( log ` A ) / A ) e. RR ) |
| 41 | 37 40 | syl | |- ( ( A e. RR /\ _e <_ A ) -> ( ( log ` A ) / A ) e. RR ) |
| 42 | axlttri | |- ( ( ( ( log ` B ) / B ) e. RR /\ ( ( log ` A ) / A ) e. RR ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
|
| 43 | 31 41 42 | syl2anr | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
| 44 | axlttri | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
|
| 45 | 44 | ad2ant2r | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 46 | 18 43 45 | 3imtr4d | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) -> A < B ) ) |
| 47 | 5 46 | impbid | |- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B <-> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |