This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflt | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( exp ` A ) < ( exp ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | |- T. |
|
| 2 | fveq2 | |- ( x = y -> ( exp ` x ) = ( exp ` y ) ) |
|
| 3 | fveq2 | |- ( x = A -> ( exp ` x ) = ( exp ` A ) ) |
|
| 4 | fveq2 | |- ( x = B -> ( exp ` x ) = ( exp ` B ) ) |
|
| 5 | ssid | |- RR C_ RR |
|
| 6 | reefcl | |- ( x e. RR -> ( exp ` x ) e. RR ) |
|
| 7 | 6 | adantl | |- ( ( T. /\ x e. RR ) -> ( exp ` x ) e. RR ) |
| 8 | simp2 | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> y e. RR ) |
|
| 9 | simp1 | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> x e. RR ) |
|
| 10 | 8 9 | resubcld | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( y - x ) e. RR ) |
| 11 | posdif | |- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> 0 < ( y - x ) ) ) |
|
| 12 | 11 | biimp3a | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> 0 < ( y - x ) ) |
| 13 | 10 12 | elrpd | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( y - x ) e. RR+ ) |
| 14 | efgt1 | |- ( ( y - x ) e. RR+ -> 1 < ( exp ` ( y - x ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> 1 < ( exp ` ( y - x ) ) ) |
| 16 | 9 | reefcld | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` x ) e. RR ) |
| 17 | 10 | reefcld | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` ( y - x ) ) e. RR ) |
| 18 | efgt0 | |- ( x e. RR -> 0 < ( exp ` x ) ) |
|
| 19 | 9 18 | syl | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> 0 < ( exp ` x ) ) |
| 20 | ltmulgt11 | |- ( ( ( exp ` x ) e. RR /\ ( exp ` ( y - x ) ) e. RR /\ 0 < ( exp ` x ) ) -> ( 1 < ( exp ` ( y - x ) ) <-> ( exp ` x ) < ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) ) ) |
|
| 21 | 16 17 19 20 | syl3anc | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( 1 < ( exp ` ( y - x ) ) <-> ( exp ` x ) < ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) ) ) |
| 22 | 15 21 | mpbid | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` x ) < ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) ) |
| 23 | 9 | recnd | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> x e. CC ) |
| 24 | 10 | recnd | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( y - x ) e. CC ) |
| 25 | efadd | |- ( ( x e. CC /\ ( y - x ) e. CC ) -> ( exp ` ( x + ( y - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` ( x + ( y - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) ) |
| 27 | 8 | recnd | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> y e. CC ) |
| 28 | 23 27 | pncan3d | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( x + ( y - x ) ) = y ) |
| 29 | 28 | fveq2d | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` ( x + ( y - x ) ) ) = ( exp ` y ) ) |
| 30 | 26 29 | eqtr3d | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( ( exp ` x ) x. ( exp ` ( y - x ) ) ) = ( exp ` y ) ) |
| 31 | 22 30 | breqtrd | |- ( ( x e. RR /\ y e. RR /\ x < y ) -> ( exp ` x ) < ( exp ` y ) ) |
| 32 | 31 | 3expia | |- ( ( x e. RR /\ y e. RR ) -> ( x < y -> ( exp ` x ) < ( exp ` y ) ) ) |
| 33 | 32 | adantl | |- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x < y -> ( exp ` x ) < ( exp ` y ) ) ) |
| 34 | 2 3 4 5 7 33 | ltord1 | |- ( ( T. /\ ( A e. RR /\ B e. RR ) ) -> ( A < B <-> ( exp ` A ) < ( exp ` B ) ) ) |
| 35 | 1 34 | mpan | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( exp ` A ) < ( exp ` B ) ) ) |