This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmledvds | |- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) <_ K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0val | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
|
| 2 | 1 | 3adantl1 | |- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
| 3 | 2 | adantr | |- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
| 4 | breq2 | |- ( n = K -> ( M || n <-> M || K ) ) |
|
| 5 | breq2 | |- ( n = K -> ( N || n <-> N || K ) ) |
|
| 6 | 4 5 | anbi12d | |- ( n = K -> ( ( M || n /\ N || n ) <-> ( M || K /\ N || K ) ) ) |
| 7 | 6 | elrab | |- ( K e. { n e. NN | ( M || n /\ N || n ) } <-> ( K e. NN /\ ( M || K /\ N || K ) ) ) |
| 8 | ssrab2 | |- { n e. NN | ( M || n /\ N || n ) } C_ NN |
|
| 9 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 10 | 8 9 | sseqtri | |- { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) |
| 11 | infssuzle | |- ( ( { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) /\ K e. { n e. NN | ( M || n /\ N || n ) } ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
|
| 12 | 10 11 | mpan | |- ( K e. { n e. NN | ( M || n /\ N || n ) } -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
| 13 | 7 12 | sylbir | |- ( ( K e. NN /\ ( M || K /\ N || K ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
| 14 | 13 | ex | |- ( K e. NN -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
| 16 | 15 | adantr | |- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
| 17 | 16 | imp | |- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
| 18 | 3 17 | eqbrtrd | |- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> ( M lcm N ) <_ K ) |
| 19 | 18 | ex | |- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) <_ K ) ) |