This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom | |- ( ( M = 0 \/ N = 0 ) <-> ( N = 0 \/ M = 0 ) ) |
|
| 2 | ancom | |- ( ( M || n /\ N || n ) <-> ( N || n /\ M || n ) ) |
|
| 3 | 2 | rabbii | |- { n e. NN | ( M || n /\ N || n ) } = { n e. NN | ( N || n /\ M || n ) } |
| 4 | 3 | infeq1i | |- inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) = inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) |
| 5 | 1 4 | ifbieq2i | |- if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) |
| 6 | lcmval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
|
| 7 | lcmval | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm M ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) ) |
|
| 8 | 7 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N lcm M ) = if ( ( N = 0 \/ M = 0 ) , 0 , inf ( { n e. NN | ( N || n /\ M || n ) } , RR , < ) ) ) |
| 9 | 5 6 8 | 3eqtr4a | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |