This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014) (Proof shortened by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltpg | |- ( A e. V -> ( A e. { B , C , D } <-> ( A = B \/ A = C \/ A = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg | |- ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
| 2 | elsng | |- ( A e. V -> ( A e. { D } <-> A = D ) ) |
|
| 3 | 1 2 | orbi12d | |- ( A e. V -> ( ( A e. { B , C } \/ A e. { D } ) <-> ( ( A = B \/ A = C ) \/ A = D ) ) ) |
| 4 | df-tp | |- { B , C , D } = ( { B , C } u. { D } ) |
|
| 5 | 4 | eleq2i | |- ( A e. { B , C , D } <-> A e. ( { B , C } u. { D } ) ) |
| 6 | elun | |- ( A e. ( { B , C } u. { D } ) <-> ( A e. { B , C } \/ A e. { D } ) ) |
|
| 7 | 5 6 | bitri | |- ( A e. { B , C , D } <-> ( A e. { B , C } \/ A e. { D } ) ) |
| 8 | df-3or | |- ( ( A = B \/ A = C \/ A = D ) <-> ( ( A = B \/ A = C ) \/ A = D ) ) |
|
| 9 | 3 7 8 | 3bitr4g | |- ( A e. V -> ( A e. { B , C , D } <-> ( A = B \/ A = C \/ A = D ) ) ) |