This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
|
| 2 | 1 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( N lcm M ) ) |
| 3 | oveq2 | |- ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) |
|
| 4 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
|
| 5 | 3 4 | sylan9eqr | |- ( ( N e. ZZ /\ M = 0 ) -> ( N lcm M ) = 0 ) |
| 6 | 5 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = 0 ) |
| 7 | 2 6 | eqtrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 8 | oveq2 | |- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
|
| 9 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
|
| 10 | 8 9 | sylan9eqr | |- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 11 | 10 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 12 | 7 11 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
| 13 | 0nn0 | |- 0 e. NN0 |
|
| 14 | 12 13 | eqeltrdi | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) |
| 15 | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
|
| 16 | 15 | nnnn0d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) |
| 17 | 14 16 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |