This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf0val | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lcmf | |- _lcm = ( z e. ~P ZZ |-> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) ) |
|
| 2 | eleq2 | |- ( z = Z -> ( 0 e. z <-> 0 e. Z ) ) |
|
| 3 | raleq | |- ( z = Z -> ( A. m e. z m || n <-> A. m e. Z m || n ) ) |
|
| 4 | 3 | rabbidv | |- ( z = Z -> { n e. NN | A. m e. z m || n } = { n e. NN | A. m e. Z m || n } ) |
| 5 | 4 | infeq1d | |- ( z = Z -> inf ( { n e. NN | A. m e. z m || n } , RR , < ) = inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) |
| 6 | 2 5 | ifbieq2d | |- ( z = Z -> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) = if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) ) |
| 7 | iftrue | |- ( 0 e. Z -> if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) = 0 ) |
|
| 8 | 7 | adantl | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> if ( 0 e. Z , 0 , inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) = 0 ) |
| 9 | 6 8 | sylan9eqr | |- ( ( ( Z C_ ZZ /\ 0 e. Z ) /\ z = Z ) -> if ( 0 e. z , 0 , inf ( { n e. NN | A. m e. z m || n } , RR , < ) ) = 0 ) |
| 10 | zex | |- ZZ e. _V |
|
| 11 | 10 | ssex | |- ( Z C_ ZZ -> Z e. _V ) |
| 12 | elpwg | |- ( Z e. _V -> ( Z e. ~P ZZ <-> Z C_ ZZ ) ) |
|
| 13 | 11 12 | syl | |- ( Z C_ ZZ -> ( Z e. ~P ZZ <-> Z C_ ZZ ) ) |
| 14 | 13 | ibir | |- ( Z C_ ZZ -> Z e. ~P ZZ ) |
| 15 | 14 | adantr | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> Z e. ~P ZZ ) |
| 16 | simpr | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> 0 e. Z ) |
|
| 17 | 1 9 15 16 | fvmptd2 | |- ( ( Z C_ ZZ /\ 0 e. Z ) -> ( _lcm ` Z ) = 0 ) |