This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The _lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsn | |- ( ( Y C_ ZZ /\ Y e. Fin /\ N e. ZZ ) -> ( _lcm ` ( Y u. { N } ) ) = ( ( _lcm ` Y ) lcm N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfunsnlem | |- ( ( Y C_ ZZ /\ Y e. Fin ) -> ( A. k e. ZZ ( A. m e. Y m || k -> ( _lcm ` Y ) || k ) /\ A. n e. ZZ ( _lcm ` ( Y u. { n } ) ) = ( ( _lcm ` Y ) lcm n ) ) ) |
|
| 2 | sneq | |- ( n = N -> { n } = { N } ) |
|
| 3 | 2 | uneq2d | |- ( n = N -> ( Y u. { n } ) = ( Y u. { N } ) ) |
| 4 | 3 | fveq2d | |- ( n = N -> ( _lcm ` ( Y u. { n } ) ) = ( _lcm ` ( Y u. { N } ) ) ) |
| 5 | oveq2 | |- ( n = N -> ( ( _lcm ` Y ) lcm n ) = ( ( _lcm ` Y ) lcm N ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( n = N -> ( ( _lcm ` ( Y u. { n } ) ) = ( ( _lcm ` Y ) lcm n ) <-> ( _lcm ` ( Y u. { N } ) ) = ( ( _lcm ` Y ) lcm N ) ) ) |
| 7 | 6 | rspccv | |- ( A. n e. ZZ ( _lcm ` ( Y u. { n } ) ) = ( ( _lcm ` Y ) lcm n ) -> ( N e. ZZ -> ( _lcm ` ( Y u. { N } ) ) = ( ( _lcm ` Y ) lcm N ) ) ) |
| 8 | 1 7 | simpl2im | |- ( ( Y C_ ZZ /\ Y e. Fin ) -> ( N e. ZZ -> ( _lcm ` ( Y u. { N } ) ) = ( ( _lcm ` Y ) lcm N ) ) ) |
| 9 | 8 | 3impia | |- ( ( Y C_ ZZ /\ Y e. Fin /\ N e. ZZ ) -> ( _lcm ` ( Y u. { N } ) ) = ( ( _lcm ` Y ) lcm N ) ) |