This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds0 | |- ( M e. ZZ -> M || 0 ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || 0 ) |
| 3 | oveq1 | |- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
|
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | lcmcom | |- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) |
|
| 6 | 4 5 | mpan2 | |- ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) |
| 7 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
|
| 8 | 6 7 | eqtr3d | |- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
| 9 | 3 8 | sylan9eqr | |- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 10 | 9 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 11 | oveq2 | |- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
|
| 12 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
|
| 13 | 11 12 | sylan9eqr | |- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 14 | 13 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 15 | 10 14 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
| 16 | 2 15 | breqtrrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> M || ( M lcm N ) ) |
| 17 | dvds0 | |- ( N e. ZZ -> N || 0 ) |
|
| 18 | 17 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || 0 ) |
| 19 | 18 15 | breqtrrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> N || ( M lcm N ) ) |
| 20 | 16 19 | jca | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 21 | lcmcllem | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |
|
| 22 | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
|
| 23 | breq2 | |- ( n = ( M lcm N ) -> ( M || n <-> M || ( M lcm N ) ) ) |
|
| 24 | breq2 | |- ( n = ( M lcm N ) -> ( N || n <-> N || ( M lcm N ) ) ) |
|
| 25 | 23 24 | anbi12d | |- ( n = ( M lcm N ) -> ( ( M || n /\ N || n ) <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
| 26 | 25 | elrab3 | |- ( ( M lcm N ) e. NN -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
| 27 | 22 26 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } <-> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) ) |
| 28 | 21 27 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 29 | 20 28 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |