This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth , the intermediate value theorem. Show that ( FC ) cannot be greater than U , and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
||
| ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
||
| ivth.11 | |- C = sup ( S , RR , < ) |
||
| Assertion | ivthlem3 | |- ( ph -> ( C e. ( A (,) B ) /\ ( F ` C ) = U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
|
| 9 | ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
|
| 10 | ivth.11 | |- C = sup ( S , RR , < ) |
|
| 11 | 9 | ssrab3 | |- S C_ ( A [,] B ) |
| 12 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 13 | 1 2 12 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 14 | 11 13 | sstrid | |- ( ph -> S C_ RR ) |
| 15 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | |- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |
| 16 | 15 | simpld | |- ( ph -> A e. S ) |
| 17 | 16 | ne0d | |- ( ph -> S =/= (/) ) |
| 18 | 15 | simprd | |- ( ph -> A. z e. S z <_ B ) |
| 19 | brralrspcev | |- ( ( B e. RR /\ A. z e. S z <_ B ) -> E. x e. RR A. z e. S z <_ x ) |
|
| 20 | 2 18 19 | syl2anc | |- ( ph -> E. x e. RR A. z e. S z <_ x ) |
| 21 | 14 17 20 | suprcld | |- ( ph -> sup ( S , RR , < ) e. RR ) |
| 22 | 10 21 | eqeltrid | |- ( ph -> C e. RR ) |
| 23 | 8 | simpld | |- ( ph -> ( F ` A ) < U ) |
| 24 | 1 2 3 4 5 6 7 8 9 10 | ivthlem2 | |- ( ph -> -. ( F ` C ) < U ) |
| 25 | 6 | adantr | |- ( ( ph /\ U < ( F ` C ) ) -> F e. ( D -cn-> CC ) ) |
| 26 | 14 17 20 16 | suprubd | |- ( ph -> A <_ sup ( S , RR , < ) ) |
| 27 | 26 10 | breqtrrdi | |- ( ph -> A <_ C ) |
| 28 | 14 17 20 | 3jca | |- ( ph -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
| 29 | suprleub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
|
| 30 | 28 2 29 | syl2anc | |- ( ph -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
| 31 | 18 30 | mpbird | |- ( ph -> sup ( S , RR , < ) <_ B ) |
| 32 | 10 31 | eqbrtrid | |- ( ph -> C <_ B ) |
| 33 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
| 34 | 1 2 33 | syl2anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 35 | 22 27 32 34 | mpbir3and | |- ( ph -> C e. ( A [,] B ) ) |
| 36 | 5 35 | sseldd | |- ( ph -> C e. D ) |
| 37 | 36 | adantr | |- ( ( ph /\ U < ( F ` C ) ) -> C e. D ) |
| 38 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 39 | 38 | eleq1d | |- ( x = C -> ( ( F ` x ) e. RR <-> ( F ` C ) e. RR ) ) |
| 40 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 41 | 39 40 35 | rspcdva | |- ( ph -> ( F ` C ) e. RR ) |
| 42 | difrp | |- ( ( U e. RR /\ ( F ` C ) e. RR ) -> ( U < ( F ` C ) <-> ( ( F ` C ) - U ) e. RR+ ) ) |
|
| 43 | 3 41 42 | syl2anc | |- ( ph -> ( U < ( F ` C ) <-> ( ( F ` C ) - U ) e. RR+ ) ) |
| 44 | 43 | biimpa | |- ( ( ph /\ U < ( F ` C ) ) -> ( ( F ` C ) - U ) e. RR+ ) |
| 45 | cncfi | |- ( ( F e. ( D -cn-> CC ) /\ C e. D /\ ( ( F ` C ) - U ) e. RR+ ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) |
|
| 46 | 25 37 44 45 | syl3anc | |- ( ( ph /\ U < ( F ` C ) ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) |
| 47 | ssralv | |- ( ( A [,] B ) C_ D -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
|
| 48 | 5 47 | syl | |- ( ph -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) ) ) |
| 50 | 22 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> C e. RR ) |
| 51 | ltsubrp | |- ( ( C e. RR /\ z e. RR+ ) -> ( C - z ) < C ) |
|
| 52 | 50 51 | sylancom | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) < C ) |
| 53 | 52 10 | breqtrdi | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) < sup ( S , RR , < ) ) |
| 54 | 28 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
| 55 | rpre | |- ( z e. RR+ -> z e. RR ) |
|
| 56 | 55 | adantl | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> z e. RR ) |
| 57 | 50 56 | resubcld | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( C - z ) e. RR ) |
| 58 | suprlub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ ( C - z ) e. RR ) -> ( ( C - z ) < sup ( S , RR , < ) <-> E. y e. S ( C - z ) < y ) ) |
|
| 59 | 54 57 58 | syl2anc | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( C - z ) < sup ( S , RR , < ) <-> E. y e. S ( C - z ) < y ) ) |
| 60 | 53 59 | mpbid | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> E. y e. S ( C - z ) < y ) |
| 61 | 11 | sseli | |- ( y e. S -> y e. ( A [,] B ) ) |
| 62 | 61 | ad2antrl | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. ( A [,] B ) ) |
| 63 | simplll | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ph ) |
|
| 64 | 63 13 | syl | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( A [,] B ) C_ RR ) |
| 65 | 64 62 | sseldd | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. RR ) |
| 66 | 63 22 | syl | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> C e. RR ) |
| 67 | 63 28 | syl | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
| 68 | simprl | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y e. S ) |
|
| 69 | suprub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ y e. S ) -> y <_ sup ( S , RR , < ) ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y <_ sup ( S , RR , < ) ) |
| 71 | 70 10 | breqtrrdi | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> y <_ C ) |
| 72 | 65 66 71 | abssuble0d | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( abs ` ( y - C ) ) = ( C - y ) ) |
| 73 | 56 | adantr | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> z e. RR ) |
| 74 | simprr | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( C - z ) < y ) |
|
| 75 | 66 73 65 74 | ltsub23d | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( C - y ) < z ) |
| 76 | 72 75 | eqbrtrd | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( abs ` ( y - C ) ) < z ) |
| 77 | 62 76 68 | jca32 | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ ( y e. S /\ ( C - z ) < y ) ) -> ( y e. ( A [,] B ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
| 78 | 77 | ex | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( y e. S /\ ( C - z ) < y ) -> ( y e. ( A [,] B ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) ) |
| 79 | 78 | reximdv2 | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( E. y e. S ( C - z ) < y -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
| 80 | 60 79 | mpd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) |
| 81 | r19.29 | |- ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) ) |
|
| 82 | pm3.45 | |- ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> ( ( ( abs ` ( y - C ) ) < z /\ y e. S ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) ) ) |
|
| 83 | 82 | imp | |- ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) ) |
| 84 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 85 | 84 | eleq1d | |- ( x = y -> ( ( F ` x ) e. RR <-> ( F ` y ) e. RR ) ) |
| 86 | 40 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 87 | 61 | ad2antll | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> y e. ( A [,] B ) ) |
| 88 | 85 86 87 | rspcdva | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` y ) e. RR ) |
| 89 | 41 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` C ) e. RR ) |
| 90 | 3 | ad2antrr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> U e. RR ) |
| 91 | 89 90 | resubcld | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( F ` C ) - U ) e. RR ) |
| 92 | 88 89 91 | absdifltd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) <-> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( ( F ` C ) - U ) ) ) ) ) |
| 93 | 89 | recnd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` C ) e. CC ) |
| 94 | 90 | recnd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> U e. CC ) |
| 95 | 93 94 | nncand | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( F ` C ) - ( ( F ` C ) - U ) ) = U ) |
| 96 | 95 | breq1d | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) <-> U < ( F ` y ) ) ) |
| 97 | 84 | breq1d | |- ( x = y -> ( ( F ` x ) <_ U <-> ( F ` y ) <_ U ) ) |
| 98 | 97 9 | elrab2 | |- ( y e. S <-> ( y e. ( A [,] B ) /\ ( F ` y ) <_ U ) ) |
| 99 | 98 | simprbi | |- ( y e. S -> ( F ` y ) <_ U ) |
| 100 | 99 | ad2antll | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( F ` y ) <_ U ) |
| 101 | 88 90 100 | lensymd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> -. U < ( F ` y ) ) |
| 102 | 101 | pm2.21d | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( U < ( F ` y ) -> -. U < ( F ` C ) ) ) |
| 103 | 96 102 | sylbid | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) -> -. U < ( F ` C ) ) ) |
| 104 | 103 | adantrd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( ( ( F ` C ) - ( ( F ` C ) - U ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( ( F ` C ) - U ) ) ) -> -. U < ( F ` C ) ) ) |
| 105 | 92 104 | sylbid | |- ( ( ( ph /\ U < ( F ` C ) ) /\ ( z e. RR+ /\ y e. S ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) -> -. U < ( F ` C ) ) ) |
| 106 | 105 | expr | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( y e. S -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) -> -. U < ( F ` C ) ) ) ) |
| 107 | 106 | impcomd | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) -> -. U < ( F ` C ) ) ) |
| 108 | 107 | adantr | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) /\ y e. S ) -> -. U < ( F ` C ) ) ) |
| 109 | 83 108 | syl5 | |- ( ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
| 110 | 109 | rexlimdva | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
| 111 | 81 110 | syl5 | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ y e. S ) ) -> -. U < ( F ` C ) ) ) |
| 112 | 80 111 | mpan2d | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
| 113 | 49 112 | syld | |- ( ( ( ph /\ U < ( F ` C ) ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
| 114 | 113 | rexlimdva | |- ( ( ph /\ U < ( F ` C ) ) -> ( E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( ( F ` C ) - U ) ) -> -. U < ( F ` C ) ) ) |
| 115 | 46 114 | mpd | |- ( ( ph /\ U < ( F ` C ) ) -> -. U < ( F ` C ) ) |
| 116 | 115 | pm2.01da | |- ( ph -> -. U < ( F ` C ) ) |
| 117 | 41 3 | lttri3d | |- ( ph -> ( ( F ` C ) = U <-> ( -. ( F ` C ) < U /\ -. U < ( F ` C ) ) ) ) |
| 118 | 24 116 117 | mpbir2and | |- ( ph -> ( F ` C ) = U ) |
| 119 | 23 118 | breqtrrd | |- ( ph -> ( F ` A ) < ( F ` C ) ) |
| 120 | 41 | ltnrd | |- ( ph -> -. ( F ` C ) < ( F ` C ) ) |
| 121 | fveq2 | |- ( C = A -> ( F ` C ) = ( F ` A ) ) |
|
| 122 | 121 | breq1d | |- ( C = A -> ( ( F ` C ) < ( F ` C ) <-> ( F ` A ) < ( F ` C ) ) ) |
| 123 | 122 | notbid | |- ( C = A -> ( -. ( F ` C ) < ( F ` C ) <-> -. ( F ` A ) < ( F ` C ) ) ) |
| 124 | 120 123 | syl5ibcom | |- ( ph -> ( C = A -> -. ( F ` A ) < ( F ` C ) ) ) |
| 125 | 124 | necon2ad | |- ( ph -> ( ( F ` A ) < ( F ` C ) -> C =/= A ) ) |
| 126 | 125 27 | jctild | |- ( ph -> ( ( F ` A ) < ( F ` C ) -> ( A <_ C /\ C =/= A ) ) ) |
| 127 | 1 22 | ltlend | |- ( ph -> ( A < C <-> ( A <_ C /\ C =/= A ) ) ) |
| 128 | 126 127 | sylibrd | |- ( ph -> ( ( F ` A ) < ( F ` C ) -> A < C ) ) |
| 129 | 119 128 | mpd | |- ( ph -> A < C ) |
| 130 | 8 | simprd | |- ( ph -> U < ( F ` B ) ) |
| 131 | 118 130 | eqbrtrd | |- ( ph -> ( F ` C ) < ( F ` B ) ) |
| 132 | fveq2 | |- ( B = C -> ( F ` B ) = ( F ` C ) ) |
|
| 133 | 132 | breq2d | |- ( B = C -> ( ( F ` C ) < ( F ` B ) <-> ( F ` C ) < ( F ` C ) ) ) |
| 134 | 133 | notbid | |- ( B = C -> ( -. ( F ` C ) < ( F ` B ) <-> -. ( F ` C ) < ( F ` C ) ) ) |
| 135 | 120 134 | syl5ibrcom | |- ( ph -> ( B = C -> -. ( F ` C ) < ( F ` B ) ) ) |
| 136 | 135 | necon2ad | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> B =/= C ) ) |
| 137 | 136 32 | jctild | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> ( C <_ B /\ B =/= C ) ) ) |
| 138 | 22 2 | ltlend | |- ( ph -> ( C < B <-> ( C <_ B /\ B =/= C ) ) ) |
| 139 | 137 138 | sylibrd | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> C < B ) ) |
| 140 | 131 139 | mpd | |- ( ph -> C < B ) |
| 141 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 142 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 143 | elioo2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
|
| 144 | 141 142 143 | syl2anc | |- ( ph -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
| 145 | 22 129 140 144 | mpbir3and | |- ( ph -> C e. ( A (,) B ) ) |
| 146 | 145 118 | jca | |- ( ph -> ( C e. ( A (,) B ) /\ ( F ` C ) = U ) ) |