This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth . The set S of all x values with ( Fx ) less than U is lower bounded by A and upper bounded by B . (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
||
| ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
||
| Assertion | ivthlem1 | |- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
|
| 9 | ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
|
| 10 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 11 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 12 | 1 2 4 | ltled | |- ( ph -> A <_ B ) |
| 13 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 14 | 10 11 12 13 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 15 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 16 | 15 | eleq1d | |- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
| 17 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 18 | 16 17 14 | rspcdva | |- ( ph -> ( F ` A ) e. RR ) |
| 19 | 8 | simpld | |- ( ph -> ( F ` A ) < U ) |
| 20 | 18 3 19 | ltled | |- ( ph -> ( F ` A ) <_ U ) |
| 21 | 15 | breq1d | |- ( x = A -> ( ( F ` x ) <_ U <-> ( F ` A ) <_ U ) ) |
| 22 | 21 9 | elrab2 | |- ( A e. S <-> ( A e. ( A [,] B ) /\ ( F ` A ) <_ U ) ) |
| 23 | 14 20 22 | sylanbrc | |- ( ph -> A e. S ) |
| 24 | 9 | ssrab3 | |- S C_ ( A [,] B ) |
| 25 | 24 | sseli | |- ( z e. S -> z e. ( A [,] B ) ) |
| 26 | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ z e. ( A [,] B ) ) -> z <_ B ) |
|
| 27 | 26 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( z e. ( A [,] B ) -> z <_ B ) ) |
| 28 | 10 11 27 | syl2anc | |- ( ph -> ( z e. ( A [,] B ) -> z <_ B ) ) |
| 29 | 25 28 | syl5 | |- ( ph -> ( z e. S -> z <_ B ) ) |
| 30 | 29 | ralrimiv | |- ( ph -> A. z e. S z <_ B ) |
| 31 | 23 30 | jca | |- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |