This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008) (Proof shortened by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
||
| Assertion | ivth | |- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
|
| 9 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 10 | 9 | breq1d | |- ( y = x -> ( ( F ` y ) <_ U <-> ( F ` x ) <_ U ) ) |
| 11 | 10 | cbvrabv | |- { y e. ( A [,] B ) | ( F ` y ) <_ U } = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
| 12 | eqid | |- sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) = sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) |
|
| 13 | 1 2 3 4 5 6 7 8 11 12 | ivthlem3 | |- ( ph -> ( sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) e. ( A (,) B ) /\ ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) ) |
| 14 | fveqeq2 | |- ( c = sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) -> ( ( F ` c ) = U <-> ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) ) |
|
| 15 | 14 | rspcev | |- ( ( sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) e. ( A (,) B ) /\ ( F ` sup ( { y e. ( A [,] B ) | ( F ` y ) <_ U } , RR , < ) ) = U ) -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
| 16 | 13 15 | syl | |- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |