This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth , the intermediate value theorem. Show that ( FC ) cannot be greater than U , and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | ||
| ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | ||
| ivth.11 | ⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | ivthlem3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ 𝐶 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 9 | ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | |
| 10 | ivth.11 | ⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) | |
| 11 | 9 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 12 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 13 | 1 2 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 14 | 11 13 | sstrid | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 15 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 17 | 16 | ne0d | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 18 | 15 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
| 19 | brralrspcev | ⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) | |
| 20 | 2 18 19 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
| 21 | 14 17 20 | suprcld | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 22 | 10 21 | eqeltrid | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 23 | 8 | simpld | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < 𝑈 ) |
| 24 | 1 2 3 4 5 6 7 8 9 10 | ivthlem2 | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |
| 25 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 26 | 14 17 20 16 | suprubd | ⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 27 | 26 10 | breqtrrdi | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 28 | 14 17 20 | 3jca | ⊢ ( 𝜑 → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 29 | suprleub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) | |
| 30 | 28 2 29 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
| 31 | 18 30 | mpbird | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
| 32 | 10 31 | eqbrtrid | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
| 33 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 34 | 1 2 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 35 | 22 27 32 34 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 36 | 5 35 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → 𝐶 ∈ 𝐷 ) |
| 38 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) ) |
| 40 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 41 | 39 40 35 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 42 | difrp | ⊢ ( ( 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) → ( 𝑈 < ( 𝐹 ‘ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) ) | |
| 43 | 3 41 42 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) ) |
| 44 | 43 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) |
| 45 | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ 𝐶 ∈ 𝐷 ∧ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) | |
| 46 | 25 37 44 45 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) |
| 47 | ssralv | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) | |
| 48 | 5 47 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) |
| 50 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 51 | ltsubrp | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < 𝐶 ) | |
| 52 | 50 51 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < 𝐶 ) |
| 53 | 52 10 | breqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ) |
| 54 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 55 | rpre | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) | |
| 56 | 55 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ ) |
| 57 | 50 56 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) ∈ ℝ ) |
| 58 | suprlub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ ( 𝐶 − 𝑧 ) ∈ ℝ ) → ( ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) ) | |
| 59 | 54 57 58 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) ) |
| 60 | 53 59 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) |
| 61 | 11 | sseli | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 62 | 61 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 63 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝜑 ) | |
| 64 | 63 13 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 65 | 64 62 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 66 | 63 22 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝐶 ∈ ℝ ) |
| 67 | 63 28 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 68 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ 𝑆 ) | |
| 69 | suprub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 71 | 70 10 | breqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ≤ 𝐶 ) |
| 72 | 65 66 71 | abssuble0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( 𝐶 − 𝑦 ) ) |
| 73 | 56 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑧 ∈ ℝ ) |
| 74 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐶 − 𝑧 ) < 𝑦 ) | |
| 75 | 66 73 65 74 | ltsub23d | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐶 − 𝑦 ) < 𝑧 ) |
| 76 | 72 75 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ) |
| 77 | 62 76 68 | jca32 | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 78 | 77 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) ) |
| 79 | 78 | reximdv2 | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 80 | 60 79 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) |
| 81 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) | |
| 82 | pm3.45 | ⊢ ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) ) ) | |
| 83 | 82 | imp | ⊢ ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) ) |
| 84 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 85 | 84 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) ) |
| 86 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 87 | 61 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 88 | 85 86 87 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 89 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 90 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑈 ∈ ℝ ) |
| 91 | 89 90 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ ) |
| 92 | 88 89 91 | absdifltd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) ) |
| 93 | 89 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 94 | 90 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑈 ∈ ℂ ) |
| 95 | 93 94 | nncand | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) = 𝑈 ) |
| 96 | 95 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ↔ 𝑈 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 97 | 84 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 98 | 97 9 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 99 | 98 | simprbi | ⊢ ( 𝑦 ∈ 𝑆 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) |
| 100 | 99 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) |
| 101 | 88 90 100 | lensymd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝑦 ) ) |
| 102 | 101 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑈 < ( 𝐹 ‘ 𝑦 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 103 | 96 102 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 104 | 103 | adantrd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 105 | 92 104 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 106 | 105 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑦 ∈ 𝑆 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 107 | 106 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 108 | 107 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 109 | 83 108 | syl5 | ⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 110 | 109 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 111 | 81 110 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 112 | 80 111 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 113 | 49 112 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 114 | 113 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 115 | 46 114 | mpd | ⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) |
| 116 | 115 | pm2.01da | ⊢ ( 𝜑 → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) |
| 117 | 41 3 | lttri3d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) = 𝑈 ↔ ( ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 118 | 24 116 117 | mpbir2and | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = 𝑈 ) |
| 119 | 23 118 | breqtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) |
| 120 | 41 | ltnrd | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) |
| 121 | fveq2 | ⊢ ( 𝐶 = 𝐴 → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 122 | 121 | breq1d | ⊢ ( 𝐶 = 𝐴 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ↔ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 123 | 122 | notbid | ⊢ ( 𝐶 = 𝐴 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ↔ ¬ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 124 | 120 123 | syl5ibcom | ⊢ ( 𝜑 → ( 𝐶 = 𝐴 → ¬ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 125 | 124 | necon2ad | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → 𝐶 ≠ 𝐴 ) ) |
| 126 | 125 27 | jctild | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 127 | 1 22 | ltlend | ⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 128 | 126 127 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 129 | 119 128 | mpd | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
| 130 | 8 | simprd | ⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐵 ) ) |
| 131 | 118 130 | eqbrtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
| 132 | fveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 133 | 132 | breq2d | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 134 | 133 | notbid | ⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 135 | 120 134 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐵 = 𝐶 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
| 136 | 135 | necon2ad | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐵 ≠ 𝐶 ) ) |
| 137 | 136 32 | jctild | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
| 138 | 22 2 | ltlend | ⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
| 139 | 137 138 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
| 140 | 131 139 | mpd | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
| 141 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 142 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 143 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 144 | 141 142 143 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 145 | 22 129 140 144 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 146 | 145 118 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ 𝐶 ) = 𝑈 ) ) |