This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth . Show that the supremum of S cannot be less than U . If it was, continuity of F implies that there are points just above the supremum that are also less than U , a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
||
| ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
||
| ivth.11 | |- C = sup ( S , RR , < ) |
||
| Assertion | ivthlem2 | |- ( ph -> -. ( F ` C ) < U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivth.9 | |- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
|
| 9 | ivth.10 | |- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
|
| 10 | ivth.11 | |- C = sup ( S , RR , < ) |
|
| 11 | 6 | adantr | |- ( ( ph /\ ( F ` C ) < U ) -> F e. ( D -cn-> CC ) ) |
| 12 | 9 | ssrab3 | |- S C_ ( A [,] B ) |
| 13 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 14 | 1 2 13 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 15 | 12 14 | sstrid | |- ( ph -> S C_ RR ) |
| 16 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | |- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |
| 17 | 16 | simpld | |- ( ph -> A e. S ) |
| 18 | 17 | ne0d | |- ( ph -> S =/= (/) ) |
| 19 | 16 | simprd | |- ( ph -> A. z e. S z <_ B ) |
| 20 | brralrspcev | |- ( ( B e. RR /\ A. z e. S z <_ B ) -> E. x e. RR A. z e. S z <_ x ) |
|
| 21 | 2 19 20 | syl2anc | |- ( ph -> E. x e. RR A. z e. S z <_ x ) |
| 22 | 15 18 21 | suprcld | |- ( ph -> sup ( S , RR , < ) e. RR ) |
| 23 | 10 22 | eqeltrid | |- ( ph -> C e. RR ) |
| 24 | 15 18 21 17 | suprubd | |- ( ph -> A <_ sup ( S , RR , < ) ) |
| 25 | 24 10 | breqtrrdi | |- ( ph -> A <_ C ) |
| 26 | 15 18 21 | 3jca | |- ( ph -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) ) |
| 27 | suprleub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ B e. RR ) -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
|
| 28 | 26 2 27 | syl2anc | |- ( ph -> ( sup ( S , RR , < ) <_ B <-> A. z e. S z <_ B ) ) |
| 29 | 19 28 | mpbird | |- ( ph -> sup ( S , RR , < ) <_ B ) |
| 30 | 10 29 | eqbrtrid | |- ( ph -> C <_ B ) |
| 31 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
| 32 | 1 2 31 | syl2anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 33 | 23 25 30 32 | mpbir3and | |- ( ph -> C e. ( A [,] B ) ) |
| 34 | 5 33 | sseldd | |- ( ph -> C e. D ) |
| 35 | 34 | adantr | |- ( ( ph /\ ( F ` C ) < U ) -> C e. D ) |
| 36 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 37 | 36 | eleq1d | |- ( x = C -> ( ( F ` x ) e. RR <-> ( F ` C ) e. RR ) ) |
| 38 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 39 | 37 38 33 | rspcdva | |- ( ph -> ( F ` C ) e. RR ) |
| 40 | difrp | |- ( ( ( F ` C ) e. RR /\ U e. RR ) -> ( ( F ` C ) < U <-> ( U - ( F ` C ) ) e. RR+ ) ) |
|
| 41 | 39 3 40 | syl2anc | |- ( ph -> ( ( F ` C ) < U <-> ( U - ( F ` C ) ) e. RR+ ) ) |
| 42 | 41 | biimpa | |- ( ( ph /\ ( F ` C ) < U ) -> ( U - ( F ` C ) ) e. RR+ ) |
| 43 | cncfi | |- ( ( F e. ( D -cn-> CC ) /\ C e. D /\ ( U - ( F ` C ) ) e. RR+ ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) ) |
|
| 44 | 11 35 42 43 | syl3anc | |- ( ( ph /\ ( F ` C ) < U ) -> E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) ) |
| 45 | ssralv | |- ( ( A [,] B ) C_ D -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) ) ) |
|
| 46 | 5 45 | syl | |- ( ph -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) ) ) |
| 47 | 46 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) ) ) |
| 48 | 2 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> B e. RR ) |
| 49 | 23 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> C e. RR ) |
| 50 | rphalfcl | |- ( z e. RR+ -> ( z / 2 ) e. RR+ ) |
|
| 51 | 50 | adantl | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( z / 2 ) e. RR+ ) |
| 52 | 51 | rpred | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( z / 2 ) e. RR ) |
| 53 | 49 52 | readdcld | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( C + ( z / 2 ) ) e. RR ) |
| 54 | 48 53 | ifcld | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. RR ) |
| 55 | 1 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> A e. RR ) |
| 56 | 25 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> A <_ C ) |
| 57 | 8 | simprd | |- ( ph -> U < ( F ` B ) ) |
| 58 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 59 | 58 | eleq1d | |- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
| 60 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 61 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 62 | 1 2 4 | ltled | |- ( ph -> A <_ B ) |
| 63 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 64 | 60 61 62 63 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 65 | 59 38 64 | rspcdva | |- ( ph -> ( F ` B ) e. RR ) |
| 66 | lttr | |- ( ( ( F ` C ) e. RR /\ U e. RR /\ ( F ` B ) e. RR ) -> ( ( ( F ` C ) < U /\ U < ( F ` B ) ) -> ( F ` C ) < ( F ` B ) ) ) |
|
| 67 | 39 3 65 66 | syl3anc | |- ( ph -> ( ( ( F ` C ) < U /\ U < ( F ` B ) ) -> ( F ` C ) < ( F ` B ) ) ) |
| 68 | 57 67 | mpan2d | |- ( ph -> ( ( F ` C ) < U -> ( F ` C ) < ( F ` B ) ) ) |
| 69 | 68 | imp | |- ( ( ph /\ ( F ` C ) < U ) -> ( F ` C ) < ( F ` B ) ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( F ` C ) < ( F ` B ) ) |
| 71 | 39 | ltnrd | |- ( ph -> -. ( F ` C ) < ( F ` C ) ) |
| 72 | fveq2 | |- ( B = C -> ( F ` B ) = ( F ` C ) ) |
|
| 73 | 72 | breq2d | |- ( B = C -> ( ( F ` C ) < ( F ` B ) <-> ( F ` C ) < ( F ` C ) ) ) |
| 74 | 73 | notbid | |- ( B = C -> ( -. ( F ` C ) < ( F ` B ) <-> -. ( F ` C ) < ( F ` C ) ) ) |
| 75 | 71 74 | syl5ibrcom | |- ( ph -> ( B = C -> -. ( F ` C ) < ( F ` B ) ) ) |
| 76 | 75 | necon2ad | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> B =/= C ) ) |
| 77 | 76 30 | jctild | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> ( C <_ B /\ B =/= C ) ) ) |
| 78 | 23 2 | ltlend | |- ( ph -> ( C < B <-> ( C <_ B /\ B =/= C ) ) ) |
| 79 | 77 78 | sylibrd | |- ( ph -> ( ( F ` C ) < ( F ` B ) -> C < B ) ) |
| 80 | 79 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( ( F ` C ) < ( F ` B ) -> C < B ) ) |
| 81 | 70 80 | mpd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> C < B ) |
| 82 | 49 51 | ltaddrpd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> C < ( C + ( z / 2 ) ) ) |
| 83 | breq2 | |- ( B = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( C < B <-> C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) ) |
|
| 84 | breq2 | |- ( ( C + ( z / 2 ) ) = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( C < ( C + ( z / 2 ) ) <-> C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) ) |
|
| 85 | 83 84 | ifboth | |- ( ( C < B /\ C < ( C + ( z / 2 ) ) ) -> C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) |
| 86 | 81 82 85 | syl2anc | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) |
| 87 | 49 54 86 | ltled | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> C <_ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) |
| 88 | 55 49 54 56 87 | letrd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> A <_ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) |
| 89 | min1 | |- ( ( B e. RR /\ ( C + ( z / 2 ) ) e. RR ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ B ) |
|
| 90 | 48 53 89 | syl2anc | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ B ) |
| 91 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. ( A [,] B ) <-> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. RR /\ A <_ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) /\ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ B ) ) ) |
|
| 92 | 1 2 91 | syl2anc | |- ( ph -> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. ( A [,] B ) <-> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. RR /\ A <_ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) /\ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ B ) ) ) |
| 93 | 92 | ad2antrr | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. ( A [,] B ) <-> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. RR /\ A <_ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) /\ if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ B ) ) ) |
| 94 | 54 88 90 93 | mpbir3and | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. ( A [,] B ) ) |
| 95 | 49 54 87 | abssubge0d | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) = ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) |
| 96 | rpre | |- ( z e. RR+ -> z e. RR ) |
|
| 97 | 96 | adantl | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> z e. RR ) |
| 98 | 49 97 | readdcld | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( C + z ) e. RR ) |
| 99 | min2 | |- ( ( B e. RR /\ ( C + ( z / 2 ) ) e. RR ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ ( C + ( z / 2 ) ) ) |
|
| 100 | 48 53 99 | syl2anc | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) <_ ( C + ( z / 2 ) ) ) |
| 101 | rphalflt | |- ( z e. RR+ -> ( z / 2 ) < z ) |
|
| 102 | 101 | adantl | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( z / 2 ) < z ) |
| 103 | 52 97 49 102 | ltadd2dd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( C + ( z / 2 ) ) < ( C + z ) ) |
| 104 | 54 53 98 100 103 | lelttrd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) < ( C + z ) ) |
| 105 | 54 49 97 | ltsubadd2d | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) < z <-> if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) < ( C + z ) ) ) |
| 106 | 104 105 | mpbird | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) < z ) |
| 107 | 95 106 | eqbrtrd | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) < z ) |
| 108 | fvoveq1 | |- ( y = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( abs ` ( y - C ) ) = ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) ) |
|
| 109 | 108 | breq1d | |- ( y = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( ( abs ` ( y - C ) ) < z <-> ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) < z ) ) |
| 110 | breq2 | |- ( y = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( C < y <-> C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) ) |
|
| 111 | 109 110 | anbi12d | |- ( y = if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) -> ( ( ( abs ` ( y - C ) ) < z /\ C < y ) <-> ( ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) < z /\ C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) ) ) |
| 112 | 111 | rspcev | |- ( ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) e. ( A [,] B ) /\ ( ( abs ` ( if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) - C ) ) < z /\ C < if ( B <_ ( C + ( z / 2 ) ) , B , ( C + ( z / 2 ) ) ) ) ) -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ C < y ) ) |
| 113 | 94 107 86 112 | syl12anc | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ C < y ) ) |
| 114 | r19.29 | |- ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ C < y ) ) -> E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ ( ( abs ` ( y - C ) ) < z /\ C < y ) ) ) |
|
| 115 | pm3.45 | |- ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> ( ( ( abs ` ( y - C ) ) < z /\ C < y ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) /\ C < y ) ) ) |
|
| 116 | 115 | imp | |- ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ ( ( abs ` ( y - C ) ) < z /\ C < y ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) /\ C < y ) ) |
| 117 | simprr | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> C < y ) |
|
| 118 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 119 | 118 | eleq1d | |- ( x = y -> ( ( F ` x ) e. RR <-> ( F ` y ) e. RR ) ) |
| 120 | simplll | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ph ) |
|
| 121 | 120 38 | syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 122 | simprl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> y e. ( A [,] B ) ) |
|
| 123 | 119 121 122 | rspcdva | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( F ` y ) e. RR ) |
| 124 | 120 39 | syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( F ` C ) e. RR ) |
| 125 | 120 3 | syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> U e. RR ) |
| 126 | 125 124 | resubcld | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( U - ( F ` C ) ) e. RR ) |
| 127 | 123 124 126 | absdifltd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) <-> ( ( ( F ` C ) - ( U - ( F ` C ) ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( U - ( F ` C ) ) ) ) ) ) |
| 128 | ltle | |- ( ( ( F ` y ) e. RR /\ U e. RR ) -> ( ( F ` y ) < U -> ( F ` y ) <_ U ) ) |
|
| 129 | 123 125 128 | syl2anc | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( F ` y ) < U -> ( F ` y ) <_ U ) ) |
| 130 | 124 | recnd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( F ` C ) e. CC ) |
| 131 | 125 | recnd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> U e. CC ) |
| 132 | 130 131 | pncan3d | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( F ` C ) + ( U - ( F ` C ) ) ) = U ) |
| 133 | 132 | breq2d | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( F ` y ) < ( ( F ` C ) + ( U - ( F ` C ) ) ) <-> ( F ` y ) < U ) ) |
| 134 | 118 | breq1d | |- ( x = y -> ( ( F ` x ) <_ U <-> ( F ` y ) <_ U ) ) |
| 135 | 134 9 | elrab2 | |- ( y e. S <-> ( y e. ( A [,] B ) /\ ( F ` y ) <_ U ) ) |
| 136 | 135 | baib | |- ( y e. ( A [,] B ) -> ( y e. S <-> ( F ` y ) <_ U ) ) |
| 137 | 136 | ad2antrl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( y e. S <-> ( F ` y ) <_ U ) ) |
| 138 | 129 133 137 | 3imtr4d | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( F ` y ) < ( ( F ` C ) + ( U - ( F ` C ) ) ) -> y e. S ) ) |
| 139 | suprub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ y e. S ) -> y <_ sup ( S , RR , < ) ) |
|
| 140 | 139 10 | breqtrrdi | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) /\ y e. S ) -> y <_ C ) |
| 141 | 140 | ex | |- ( ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. z e. S z <_ x ) -> ( y e. S -> y <_ C ) ) |
| 142 | 120 26 141 | 3syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( y e. S -> y <_ C ) ) |
| 143 | 120 14 | syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( A [,] B ) C_ RR ) |
| 144 | 143 122 | sseldd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> y e. RR ) |
| 145 | 120 23 | syl | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> C e. RR ) |
| 146 | 144 145 | lenltd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( y <_ C <-> -. C < y ) ) |
| 147 | 142 146 | sylibd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( y e. S -> -. C < y ) ) |
| 148 | 138 147 | syld | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( F ` y ) < ( ( F ` C ) + ( U - ( F ` C ) ) ) -> -. C < y ) ) |
| 149 | 148 | adantld | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( ( ( F ` C ) - ( U - ( F ` C ) ) ) < ( F ` y ) /\ ( F ` y ) < ( ( F ` C ) + ( U - ( F ` C ) ) ) ) -> -. C < y ) ) |
| 150 | 127 149 | sylbid | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) -> -. C < y ) ) |
| 151 | 117 150 | mt2d | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> -. ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) |
| 152 | 151 | pm2.21d | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ ( y e. ( A [,] B ) /\ C < y ) ) -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) -> -. ( F ` C ) < U ) ) |
| 153 | 152 | expr | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( C < y -> ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) -> -. ( F ` C ) < U ) ) ) |
| 154 | 153 | impcomd | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) /\ C < y ) -> -. ( F ` C ) < U ) ) |
| 155 | 116 154 | syl5 | |- ( ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) /\ y e. ( A [,] B ) ) -> ( ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ ( ( abs ` ( y - C ) ) < z /\ C < y ) ) -> -. ( F ` C ) < U ) ) |
| 156 | 155 | rexlimdva | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( E. y e. ( A [,] B ) ( ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ ( ( abs ` ( y - C ) ) < z /\ C < y ) ) -> -. ( F ` C ) < U ) ) |
| 157 | 114 156 | syl5 | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) /\ E. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z /\ C < y ) ) -> -. ( F ` C ) < U ) ) |
| 158 | 113 157 | mpan2d | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( A. y e. ( A [,] B ) ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> -. ( F ` C ) < U ) ) |
| 159 | 47 158 | syld | |- ( ( ( ph /\ ( F ` C ) < U ) /\ z e. RR+ ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> -. ( F ` C ) < U ) ) |
| 160 | 159 | rexlimdva | |- ( ( ph /\ ( F ` C ) < U ) -> ( E. z e. RR+ A. y e. D ( ( abs ` ( y - C ) ) < z -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < ( U - ( F ` C ) ) ) -> -. ( F ` C ) < U ) ) |
| 161 | 44 160 | mpd | |- ( ( ph /\ ( F ` C ) < U ) -> -. ( F ` C ) < U ) |
| 162 | 161 | pm2.01da | |- ( ph -> -. ( F ` C ) < U ) |