This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfi | |- ( ( F e. ( A -cn-> B ) /\ C e. A /\ R e. RR+ ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |
|
| 2 | cncfrss2 | |- ( F e. ( A -cn-> B ) -> B C_ CC ) |
|
| 3 | elcncf2 | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( F e. ( A -cn-> B ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
| 5 | 4 | ibi | |- ( F e. ( A -cn-> B ) -> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 6 | 5 | simprd | |- ( F e. ( A -cn-> B ) -> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
| 7 | oveq2 | |- ( x = C -> ( w - x ) = ( w - C ) ) |
|
| 8 | 7 | fveq2d | |- ( x = C -> ( abs ` ( w - x ) ) = ( abs ` ( w - C ) ) ) |
| 9 | 8 | breq1d | |- ( x = C -> ( ( abs ` ( w - x ) ) < z <-> ( abs ` ( w - C ) ) < z ) ) |
| 10 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 11 | 10 | oveq2d | |- ( x = C -> ( ( F ` w ) - ( F ` x ) ) = ( ( F ` w ) - ( F ` C ) ) ) |
| 12 | 11 | fveq2d | |- ( x = C -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) = ( abs ` ( ( F ` w ) - ( F ` C ) ) ) ) |
| 13 | 12 | breq1d | |- ( x = C -> ( ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y <-> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y ) ) |
| 14 | 9 13 | imbi12d | |- ( x = C -> ( ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) <-> ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y ) ) ) |
| 15 | 14 | rexralbidv | |- ( x = C -> ( E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) <-> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y ) ) ) |
| 16 | breq2 | |- ( y = R -> ( ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y <-> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) |
|
| 17 | 16 | imbi2d | |- ( y = R -> ( ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y ) <-> ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) ) |
| 18 | 17 | rexralbidv | |- ( y = R -> ( E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < y ) <-> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) ) |
| 19 | 15 18 | rspc2v | |- ( ( C e. A /\ R e. RR+ ) -> ( A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) ) |
| 20 | 6 19 | mpan9 | |- ( ( F e. ( A -cn-> B ) /\ ( C e. A /\ R e. RR+ ) ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) |
| 21 | 20 | 3impb | |- ( ( F e. ( A -cn-> B ) /\ C e. A /\ R e. RR+ ) -> E. z e. RR+ A. w e. A ( ( abs ` ( w - C ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` C ) ) ) < R ) ) |