This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubsticc.1 | |- ( ph -> X e. RR ) |
|
| itgsubsticc.2 | |- ( ph -> Y e. RR ) |
||
| itgsubsticc.3 | |- ( ph -> X <_ Y ) |
||
| itgsubsticc.4 | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
||
| itgsubsticc.5 | |- ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) ) |
||
| itgsubsticc.6 | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
||
| itgsubsticc.7 | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
||
| itgsubsticc.8 | |- ( u = A -> C = E ) |
||
| itgsubsticc.9 | |- ( x = X -> A = K ) |
||
| itgsubsticc.10 | |- ( x = Y -> A = L ) |
||
| itgsubsticc.11 | |- ( ph -> K e. RR ) |
||
| itgsubsticc.12 | |- ( ph -> L e. RR ) |
||
| Assertion | itgsubsticc | |- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubsticc.1 | |- ( ph -> X e. RR ) |
|
| 2 | itgsubsticc.2 | |- ( ph -> Y e. RR ) |
|
| 3 | itgsubsticc.3 | |- ( ph -> X <_ Y ) |
|
| 4 | itgsubsticc.4 | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
|
| 5 | itgsubsticc.5 | |- ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) ) |
|
| 6 | itgsubsticc.6 | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
|
| 7 | itgsubsticc.7 | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
|
| 8 | itgsubsticc.8 | |- ( u = A -> C = E ) |
|
| 9 | itgsubsticc.9 | |- ( x = X -> A = K ) |
|
| 10 | itgsubsticc.10 | |- ( x = Y -> A = L ) |
|
| 11 | itgsubsticc.11 | |- ( ph -> K e. RR ) |
|
| 12 | itgsubsticc.12 | |- ( ph -> L e. RR ) |
|
| 13 | eqid | |- ( u e. ( K [,] L ) |-> C ) = ( u e. ( K [,] L ) |-> C ) |
|
| 14 | eqid | |- ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) = ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) |
|
| 15 | eqidd | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A ) ) |
|
| 16 | 10 | adantl | |- ( ( ph /\ x = Y ) -> A = L ) |
| 17 | 1 | rexrd | |- ( ph -> X e. RR* ) |
| 18 | 2 | rexrd | |- ( ph -> Y e. RR* ) |
| 19 | ubicc2 | |- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
|
| 20 | 17 18 3 19 | syl3anc | |- ( ph -> Y e. ( X [,] Y ) ) |
| 21 | 15 16 20 12 | fvmptd | |- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) = L ) |
| 22 | cncff | |- ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
|
| 23 | 4 22 | syl | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
| 24 | 23 20 | ffvelcdmd | |- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) e. ( K [,] L ) ) |
| 25 | 21 24 | eqeltrrd | |- ( ph -> L e. ( K [,] L ) ) |
| 26 | elicc2 | |- ( ( K e. RR /\ L e. RR ) -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
|
| 27 | 11 12 26 | syl2anc | |- ( ph -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
| 28 | 25 27 | mpbid | |- ( ph -> ( L e. RR /\ K <_ L /\ L <_ L ) ) |
| 29 | 28 | simp2d | |- ( ph -> K <_ L ) |
| 30 | 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 | itgsubsticclem | |- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |